NEED-TO-KNOW VOCABULARY

ORDER OF OPERATIONS - PEMDAS	
	ex: $25-4^{2}+3$ * 4
Parenthesis	no parenthesis in this problem
Exponents	25-16+3*4
Multiply/Divide	25-16+12
Add/Subtract	$9+12$
Solution	21

ALGEBRA

Constant	the term that doesn't change	ex: $2 m+\mathbf{7}$
Coefficient	the number attached to the letter	ex: $\mathbf{2 m + 7}$
Variable	any term with a letter	ex: $2 m+7$

Combining Like Terms ex:
$3 m+2 b+12 m-5 b=15 m-3 b$
\star be sure to use symbol in front of coefficient when combining

Ratio	comparison of two numbers	ex: $\frac{3}{4}$ or $3: 4$
Exponents	the power/degree, how many times to multiply the base number	ex: $5^{3}(3=$ exponent $)$
Base	the number that gets multiplied by itself	ex: $5^{3}(5=$ base $)$ ex: To solve $\left(5^{*} 5 * 5\right)=125$

FOIL METHOD FOR MULTIPLYING TWO BINOMIALS

FOIL	First - Outer - Inner - Last	working with trinomials

NAMES FOR DIFFERENT TYPES OF TOTALS, ANSWERS, OR SOLUTIONS

Sum	a result after adding two or more numbers	total, add
Difference	a result after subtracting two or more numbers	less than, minus, subtract
Product	a result after multiplying two or more numbers	factor, of
Quotient	a result after dividing two or more numbers	dividing
Absolute Value	distance from zero	value is always positive (+)

COORDINATE PLANE AND FUNCTIONS

Function (FNC)	a relationship between x and y	for each x-value, there is only one y-value (no repeating x - value)
Domain	x -value	(\mathbf{x}, y)
Range	y -value	(x, \mathbf{y})
Line Formula	$\mathrm{y}=\mathbf{m x}+\mathbf{b}$	$\mathbf{m}=$ slope, $\mathbf{b}=\mathrm{y}$-intercept
Point Slope	$y-y_{1}=m\left(x-x_{1}\right)$	rise over run
Slope Formula	$\mathbf{m}=\frac{y 2-y 1}{x 2-x 1}$	\mathbf{b} value (start here when making a line)
Y-Intercept	where the line intersects y axis	
Linear FCN	points make a line, constant rate of change	ex: parabola, repeating x - values
Non-Linear FCN	does not look like a line	smile- face or frowny face
Quadratic FCN	make parabolas	
Exponential	upward sloping, y -value increases faster than the x, always lies above the x -axis	
Sequence	a type of function used to describe patterns	

EXPONENT RULES

Multiplying: When multiplying exponents with the same base, we add the exponents	ex: $5^{3 *} 5^{3}=5^{3+3}=5^{6}$
Dividing: When dividing exponents with the same base, we subtract the exponents	ex: $2^{3} \div 2^{2}=2^{3-2}=2^{1}=2$
Note: anything to the ^1 = invisible	

QUADRATIC EQUATIONS

How to \quad Set equation equal to zero, then break polynomial into 2 factors: () ()
solve

$e x: x^{2}+5 x+6=0$	Look for factors of 6, that when combined together will give us the middle term of 5 .
$(x+3)(x+2)=0$	Solve each quantity individually for x
$\begin{array}{rrrr} x+3 & =0 & x+2=0 \\ -3 & -3 & -2 & -2 \end{array}$	
$x=-3 \quad x=-2$	Our two solutions for x are -3 and -2
Basically, you are using the distributive property twice. ex: Given $(x+4)(x-5)=$	
First: $\quad x \cdot x=x^{2}$	first term in $1^{\text {st }}()$ times $1^{\text {st }}$ term in $2^{\text {nd }}()$
Outer: $x \cdot(-5)=-5 x$	$\begin{aligned} & x \text { from } 1^{\text {st }}() \\ & -5 \text { from the } 2^{\text {nd }}() \end{aligned}$
Inner: $4 \cdot x=4 x$	4 from the $1^{\text {st }}$ () times x from the $2^{\text {nd }}$ ()
Last: $4 \cdot(-5)=-20$	4 from $1^{\text {st }}$ () times -5 from the $2^{\text {nd }}$ ()
Combine all terms: $\mathrm{x}^{2}-5 \mathrm{x}+4 \mathrm{x}-20=\mathrm{x}^{2}-1 \mathrm{x}-20$	

REAL includes all the numbers

A. Irrational	numbers that cannot be written as a fraction, never end and never repeat	ex: π or $\sqrt{2}$
B. Rational	can be written as a fraction or a decimal that ends or repeats.	ex: 0.3333 or 0.25
	I. Integers: whole numbers and their opposites	ex: 4 and -4
	II. Whole: start with 0	ex: $0,1,2,3 \ldots$
	III. Natural: where one naturally wants to start counting	ex: $1,2,3 \ldots$

PROPERTIES

Commutative	with addition and multiplication of numbers, you can change the order of the numbers in the problem, and it will not affect the answer.	ex: $a+b=b+a$
Distributive	number outside property is multiplied by all terms inside properties	ex: $2(3+4)=$ $(2 * 3)+(2 * 4)$
Associative	values inside of the parenthesis change / grouping changes	ex: $(a+b)+c=a+(b+c)$
Identity (Addition)	add any number to zero, the number stays the same al also called the Zero Property	ex: $a+0=a, 9+0=9$
Identity (Multiplication)	anything times one is the number	ex: $5^{* 1=5}$
Equation vs.	equations have $=$ expressions are just phrases Expression	a phrase is greater than $(x>1)$, less than $(x<1),(\leq)$ less than or equal to, or (\geq) greater than or equal to.
Inequalities		

STATISTICS		
Mean	the average of the values	sum of values, divided by how many values there are. a.k.a. Fair value
Median	middle value	arrange the data points smallest to largest, find the middle number
Range	largest value minus smallest value	
Mode	the value that occurs most frequently	most
Quartile	three identifiers in which the data set can be grouped	ex: Q1, Q2 (same as median), Q3
Interquartile Range (IQR)	a way in which to measure the spread of data	ex: Q3 - Q1
Square Root	the reverse of a squared number (a number multiplied by itself to get that number)	
Cubed Root	the reverse of a cubed number (a number multiplied by itself three times to get that number)	

TI-84

Turn on

- Clear all : 2nd $\rightarrow+\rightarrow 7 \rightarrow 1 \rightarrow 2$
- Input Data for tables:

$$
\text { Stat } \rightarrow \text { Edit } \rightarrow \text { Enter }
$$

- To clear: \uparrow clear \downarrow
- Insert data to get a linear regression:
x -values $=\mathrm{L} 1, \mathrm{y}$-values $=\mathrm{L} 2 \quad \rightarrow$ stat \rightarrow calc \rightarrow \#4 \rightarrow enter
- Input data for tables

Reference Sheet for Algebra I (NGLS)

Conversions

1 mile $=5280$ feet
1 mile = 1760 yards
1 pound = 16 ounces
1 ton = 2000 pounds

Conversions Across

Measurement Systems
1 inch $=2.54$ centimeters
1 meter $=39.37$ inches
1 mile $=1.609$ kilometers
1 kilometer $=0.6214$ mile
1 pound $=0.454$ kilogram
1 kilogram $=2.2$ pounds

Quadratic Equation	$y=a x^{2}+b x+c$
Quadratic Formula	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Equation of the Axis of Symmetry	$x=-\frac{b}{2 a}$
Slope	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Linear Equation Slope Intercept	$y=m x+b$
Linear Equation Point Slope	$y-y_{1}=m\left(x-x_{1}\right)$

Exponential Equation	$y=a b^{x}$
Annual Compound Interest	$A=P(1+r)^{n}$
Arithmetic Sequence	$a_{n}=a_{1}+d(n-1)$
Geometric Sequence	$a_{n}=a_{1} r^{n-1}$
Interquartile Range (IQR)	$I Q R=Q_{3}-Q_{1}$
	Lower Outlier Boundary $=Q_{1}-1.5(I Q R)$
	Upper Outlier Boundary $=Q_{3}+1.5(I Q R)$
Outlier	

