MAXIMIZE SPRING INSTRUCTION FOR YOUR ALGEBRA REGENTS STUDENTS

MARCH 30TH 1:00 PM - 3:00 PM

ABIGAIL KRZYZANOWICZ (SUNY FREDONIA MEPS) KRISTINE POTTER (NORTHERN CHAUTAUQUA CATHOLIC SCHOOL)

OBJECTIVES

- Introductions
- Gather materials
 - Cheat sheet
 - Group work practice problems handout
 - TI-84
 - Power point slides
- Problem solve together
- Go into breakout rooms
- Questions

PROBLEM SOLVING

PEMDAS - an order of operation

SUBSTITUTION FOR A GIVEN VALUE

A function is defined as $K(x) = 2x^2 - 5x + 3$. The value of K(-3) is:

(1) 54
(2) 36 (3) 0
(4) -18

FOIL - order of operation

The expression $(m - 3)^2$ is equivalent to:

(1) $m^2 + 9$ (2) $m^2 - 9$ (3) $m^2 - 6m + 9 \bigstar$ (4) $m^2 - 6m - 9$

SOLVE FOR A VARIABLE

What is the solution to $\frac{3}{2}$ b + 5 < 17?

(1) b < 8 ★
(2) b > 8
(3) b < 18
(4) b > 18

SOLVE FOR A VARIABLE CONT'D - Common

The volume of a trapezoidal prism can be found using the formula

V = $\frac{1}{2}$ a(b + c)h. Which equation is correctly solved for b?

Becoming Familiar with TI-84

Given:

9

x + y = 132x - 3y = 1

What point satisfies both equations?

"Rewriting as a matrix" means setting it up as rows and columns

- On TI-84: > (2nd) (√^
- > (2nd), (x⁻¹)
- Arrow over to EDIT, ENTER
 Enter dimensions of the matrix as 2 * 3
- Enter the system as a matrix by putting the numbers in
 - \succ Ex: 1 \rightarrow 1 \rightarrow 13
 - > 2 (ENTER) (-) 3 (ENTER) 1 (ENTER)

Next:

> Clear the screen: (2nd) (MODE)

How to solve:

- ➤ (2nd) (x⁻¹)
- Arrow over to MATH and scroll down
- Option B: "rrf" (ENTER)
- ➤ 2nd, x^{^-1}
- > Choose appropriate matrix
- > ENTER
- > ENTER
- The answer is in matrix form

BREAK OUT ROOMS \odot

BREAKOUT #1 - FOIL

1a) When written in standard form, the product of (3 + x) and (2x - 5) is:

- (1) 3x 2
- (2) 2x² + x 15
- (3) 2x² 11x 15
- (4) $6x 15 + 2x^2 5x$

13

Breakout #1 Debrief - FOIL

1b. Breakout bonus - FOIL

(x + 4)(x + 7)

15

(x + 4)(x + 7)

First:	Multiply each part X * X =	Get ready to simplify X ²
Outer:	x * 7 =	(+) 7x
Inner:	4 * x =	(+) 4x
Last:	4 * 7 =	(+) 28
	x ² + 1	1x + 28

Combine like (or similar) terms and put - them in "standard form" (aka biggest exponent/variable to lowers)

1c. Breakout bonus - FOIL

(2x + 9)(2x - 3)

1c. Breakout bonus - FOIL answer

(2x + 9)(2x - 3)

First:
$$2x * 2x = 4x^2$$

Outer: $2x * (-3) = -6x$
Inner: $9 * 2x = (+)18x$ = $12x$
Last: $9 * (-3) = -27$

$$4x^2 - 6x + 18x - 27$$

 $4x^2 + 12x - 27$

1d. Breakout bonus - FOIL

Students were asked to write $2x^3 + 3x + 4x^2 + 1$ in standard form. Four student responses are shown below.

Alexa: $4x^2 + 3x + 2x^3 + 1$ Carol: $2x^3 + 3x + 4x^2 + 1$ Ryan: $2x^3 + 4x^2 + 3x + 1$ Eric: $1 + 2x^3 + 3x + 4x^2$

Which student's response is correct?

19

1d. Breakout bonus - FOIL answer

Students were asked to write $2x^3 + 3x + 4x^2 + 1$ in standard form. Four student responses are shown below.

Alexa: $4x^2 + 3x + 2x^3 + 1$ Carol: $2x^3 + 3x + 4x^2 + 1$ **Ryan:** $2x^3 + 4x^2 + 3x + 1$ Eric: $1 + 2x^3 + 3x + 4x^2$

Which student's response is correct?

Ryan - Because his is written in standard notation (aka - the biggest exponent to smallest exponent)

 $x^3 > x^2 > x > 1$

1e. Breakout bonus - FOIL

Factor the expression y⁴ - 36y² completely

1e. Breakout bonus - FOIL answer

We are not going to get intimidated with the different

exponents 🙂

3/30/2023

BREAKOUT #2

23

Breakout (#2) - unFOIL

x² + 5x - 6

(1)
$$(x + 3)(x - 2)$$

$$(2) (X + Z)(X - 3)$$

(3)
$$(x - 6)(x + 1)$$

(4)
$$(x + 6)(x - 1)$$

2b. Breakout bonus

Which expressions is equivalent to $2x^2 + 8x - 10$?

- (1) 2(x 1)(x + 5)
- (2) 2(x + 1)(x 5)
- (3) 2(x 1)(x 5)
- (4) 2(x + 1)(x + 5)

2c. Breakout bonus answer

Which expressions is equivalent to $2x^2 + 8x - 10$?

- (1) 2(x 1)(x + 5)
- (2) 2(x + 1)(x 5)
- (3) 2(x 1)(x 5)
- (4) 2(x + 1)(x + 5)
- 1. We can factor out (or divide by) a 2 to make the trinomial more simple
- $(2x^2 + 8x 10) \div 2 = 2(x^2 + 4x 5)$
- 2. Setting the 2 to the side, let's look at our new trinomial and its factors:
- (x² + 4x 5)

27

2c. Breakout bonus - FOIL

Factor completely: 3y² - 12y - 288

2e. Breakout bonus

The expression $36x^2 - 9$ is equivalent to:

- (1) (6x-3) x²
- (2) (18x 4.5) x²
- (3) (6x + 3)(6x 3)
- (4) (18x + 4.5)(18x 4.5)

2e. Breakout bonus answer

The expression $36x^2 - 9$ is equivalent to:

- (1) (6x-3) x²
- (2) (18x 4.5) x²
- (3) (6x + 3)(6x 3) ★
- (4) (18x + 4.5)(18x 4.5)

BREAKOUT #3

Breakout (#3) - Word Problem (solve for "d")

Joe has dimes and nickels in his piggy bank totaling \$1.45. The number of nickels he has is 5 more than twice the number of dimes (d). Which equation could be used to find the number of dimes he has?

- (1) 0.10d + 0.05 (2d + 5) = 1.45
- (2) 0.10(2d + 5) + 0.05d = 1.45
- (3) d + (2d + 5) = 1.45
- (4) (d 5) + 2d = 1.45

33

Breakout (#3)Debrief - Word Problem

Joe has dimes and nickels in his piggy bank totaling \$1.45. The number of nickels he has is 5 more than twice the number of dimes (d). Which equation could be used to find the number of dimes he has?

(1) 0.10d + 0.05 (2d +5) = 1.45

- (2) 0.10 (2d + 5) + 0.05d = 1.45
- (3) d + (2d + 5) = 1.45
- (4) (d 5) + 2d = 1.45

Given:

d = # of dimes Value of a dime (0.10) Value of a nickel (0.05) Has to be one of the first two choices

(Twice the number of dimes) + 5 2d + 5 (distributing the amount of nickels)

• 0.10d + 0.05 (2d +5) = 1.45 (PEMDAS - check) 0.10d + 0.10d + .25 = 1.45 0.2d + 0.25 = 1.45

- d = 6 → plug in to check your answer with the original equation

Breakout bonus 3b - Word Problem

- At an amusement park, the cost for an adult admission is a, and for a child the cost is c. For a group of six that included two children, the cost was \$325.94. For a group of five that included three children, the cost was \$256.95. All ticket prices include tax.
 - > Write a system of equations, in terms of a and c, that models this situation.
 - Use your system of equations to determine the exact cost of each type of ticket algebraically.
 - > Determine the cost for a group of four that includes three children.

Breakout bonus - Word Problem answer

At an amusement park, the cost for an adult admission is **a**, and for a child the cost is **c**. For a **group of six** that included **two** children, the cost was **\$325.94**. For a **group of five** that included **three children**, the cost was **\$256.95**. All ticket prices include tax.

- Write a system of equations, in terms of a and c, that models this situation.
 - ▶ 4a + 2c = \$325.94
 - ▶ 2a + 3c = \$256.95
- Use your system of equations to determine the exact cost of each type of ticket algebraically.

children. ► 1a + 3c = 1(57.99) + 3(46.99) = \$198.96

On TI-84:

- ▶ (2nd), (x⁻¹)
- Arrow over to EDIT, ENTER
- Enter dimensions of the matrix as 2 * 3
- Enter the system as a matrix by putting the numbers in
 Ex: 4 (ENTER) 2 (ENTER) 325.94 (ENTER)
 - > 2 (ENTER) 3 (ENTER) 256.95 (ENTER)

Next:

Clear the screen: (2nd) (MODE)

How to solve:

- $> (2^{nd}) (x^{-1})$
- Arrow over to MATH and scroll down
- > Option B (after numbers): "rrf" (ENTER)
- > 2nd, x^-1
- Choose appropriate matrix
- > ENTER
- ENTER
- > The answer is in matrix form

Breakout bonus question 3c

Which domain is most appropriate for a function that represents the number of items, f(x), placed into a laundry basket each day, x, for the month of January?

- (1) integers
- (2) rational numbers
- (3) whole numbers
- (4) irrational numbers

37

Breakout bonus answer

Which domain is most appropriate for a function that represents the number of items, f(x), placed into a laundry basket each day, x, for the month of January?

- (1) integers (definition): whole numbers and their opposites {ex: 3, -2, -1, 0, 1, 2, 3...}
 - (1) Can't have a negative number of laundry items
- (2) rational numbers: can be written as a fraction or as a decimal that ends or repeats. Integers are included as a type of rational number
 - (1) Can't have a fraction / part of a laundry item
- (3) whole numbers: start with 0 {ex: 0, 1, 2, 3, 4...}, not a fraction or decimal

(1) You can have 0 laundry items, or whole laundry items

- (4) irrational numbers: numbers that cannot be written as a fraction, never end and never repeat
 - (1) The amount of laundry can end and repeat (unfortunately it is ongoing haha)

Questions? ©

TI-84 Plus

9

3

DEL

5) 6

7) 8

4

1) (2

0).(-)

LN

ON

40

