Lesson 1 - Functions

Function Definition and Representations

A function is one of the most important concepts in Algebra. Consider the following examples.

Tony and Maria attend different schools that each have a vending machine in the cafeteria.

- Tony's favorite snack, potato chips, are in the location labeled A7. Each time he pays and inputs A7, potato chips come out.
- Maria's favorite snack, chocolate bars, are in the location labeled B4. Each time she pays and inputs B4, the vending machine drops a chocolate bar, but also mixed nuts.

Something is a function if every x-value (or input) in the domain is assigned to only one y-value (or output) in the range.

1. Based on this definition, which person's vending machine would be an example of something that is a function? Explain how you know.
2. Explain why the other person's vending machine is not a function.

The domain of a function is the set of all inputs with outputs. The set of all outputs a function has is its range.
3. In the example of the vending machine, what would represent the domain and range?

A function is usually some mathematical rule that tells you what to do with x in order to get y .
Consider the linear function

$$
y=3 x+7
$$

This rule tells you to multiply each x-value by 3 then add 7 to get the y-value.
Here are other ways to represent $\quad \boldsymbol{y}=\mathbf{3 x + 7}$.

Every x-value has exactly one y-value.
4. Solve the following Regents question.

7 Which relation does not represent a function?

\mathbf{x}	1	2	3	4	5	6
\mathbf{y}	3.2	4	5.1	6	7.4	8.8

(1)

(2)

$$
y=3 \sqrt{x+1}-2
$$

(3)

(4)

An equivalent way to write this linear function is with function notation: $f(x)=3 x+7$
You say "f of \boldsymbol{x} " when you see $\boldsymbol{f}(\boldsymbol{x})$ and it is another way of writing the variable \boldsymbol{y}.
Function notation is used to input numbers for \mathbf{x}.
For instance, consider $\boldsymbol{f}(\mathbf{8})$. This means "find the y-value when x equals 8 ." For a simple linear function such as $\boldsymbol{f}(\boldsymbol{x})=\mathbf{3 x}+7$, you may be able to find y in your head, or with the home screen of your calculator. Here is how to calculate $\boldsymbol{f}(\mathbf{8})$ algebraically.

$$
\begin{gathered}
f(8)=3 \cdot 8+7 \\
f(8)=24+7 \\
f(8)=31
\end{gathered}
$$

5. Determine the value of $\boldsymbol{f}(\mathbf{3}), \boldsymbol{f}(\mathbf{2 5})$, and of $\boldsymbol{f}(-\mathbf{6})$ algebraically.

Linear functions like $\boldsymbol{f}(\boldsymbol{x})=\mathbf{3 x}+\mathbf{7}$ are the easiest ones to work with.

Using the TABLE

Consider a non-linear function $\boldsymbol{g}(\boldsymbol{x})=\mathbf{4} \boldsymbol{x}^{2}-\sqrt{\mathbf{3 x}}$. Notice that this function has been named $g(x)$ "g of x ". We can use any letter to name a function, which is helpful when a problem involves more than one function. Let's explore $g(x)$ with the calculator.

Every function can be represented with a table or a graph.

All function rules can be put into $Y=$

The 2 on top of the x is an exponent. To get an exponent, press the ${ }^{\wedge}$ key and then the value of the exponent. Since 2 is a very common exponent, you can also press the \boldsymbol{x}^{2} key. Notice that anything you type will stay in the exponent until you press the right arrow button \rightarrow.

Notice that this function involves the square root of $3 x$. This symbol $\sqrt{ }$ is called a radical. Find the radical symbol on your calculator by pressing $2^{\text {nd }}$ and \boldsymbol{x}^{2}.

From the $\mathbf{Y}=$ menu, we can find specific values of $g(x)$ by using tables or graphs.

Alejandro wants to find $\boldsymbol{g}(\mathbf{4})$ using a table.

Press $\mathbf{2}^{\text {nd }}, ~ G R A P H$
Use the up and down arrows until you get to $x=4$.

$$
g(4)=60.536
$$

Next, Alejandro wants to find \boldsymbol{g} (528) using a table. He definitely doesn't want to press the down arrow that many times.

He presses $\mathbf{2}^{\text {nd }}$, WINDOW and changes TbIStart to 528
$\Delta \boldsymbol{T b l}=\mathbf{1}$ means that the x -values will count by 1.
Don't worry about the rest.

When Alejandro presses $\mathbf{2}^{\text {nd }}$ GRAPH, his table starts with $\mathbf{x}=\mathbf{5 2 8}$. The \mathbf{y} value is too large to display properly unless he highlights it using the arrow keys. This sometimes happens when x is very large.

Alejandro concludes that $g(528)=1115096.2005$

Using the GRAPH

Tatiana is working with the same function, $\boldsymbol{g}(\boldsymbol{x})=4 \boldsymbol{x}^{2}-\sqrt{3 \boldsymbol{x}}$
Tatiana wants to find $\boldsymbol{g}(\mathbf{4})$ using a graph.
Press GRAPH. If your viewing window is different, press ZOOM, 6 to get a standard window.

Press TRACE, 4, ENTER

Tatiana notices that when $x=4, y=60.535898$.
Alejandro's and Tatiana's answers for $\boldsymbol{g}(4)$ are slightly different, but that's okay.
Tatiana notices that her calculator tells her that $g(4)=60.535898$ at the bottom of her screen, but that she can't see the y-value 60.535898 on the graph of the function. She counts along the y-axis and notices that it only goes up to 10 .

She decides to make her graph show more y-values.

```
WINDIOW
    Mir= -10
    xM: x=10
    XSCl=1
    Mir= - 10
    YMax=7目
    YECl=1
4%ES=1
```


She presses WINDOW and sets her maximum y-value to 70 .

When she presses GRAPH, the y-axis goes up to 70 .
When she presses TRACE, 4, ENTER, she can see the location of $g(4)$ on the graph.

In general, make the Xmax and Ymax higher than the number you want, and make the Xmin and Ymin lower than the number you want. You never need to change the Xscl or Yscl, but if you do, they tell the calculator how far to space the marks on the x-axis and y-axis.

Try the following Regents questions. Try to use the graphing calculator tables and graphs, and what you know about functions, to answer them.
6.

The function $g(x)$ is defined as $g(x)=-2 x^{2}+3 x$. The value of $g(-3)$ is
(1) -27
(3) 27
(2) -9
(4) 45
7.

If $k(x)=2 x^{2}-3 \sqrt{x}$, then $k(9)$ is
(1) 315
(3) 159
(2) 307
(4) 153
8.

Marc bought a new laptop for $\$ 1250$. He kept track of the value of the laptop over the next three years, as shown in the table below.

Years After Purchase	Value in Dollars
1	1000
2	800
3	640

Which function can be used to determine the value of the laptop for x years after the purchase?
(1) $f(x)=1000(1.2)^{x}$
(3) $f(x)=1250(1.2)^{x}$
(2) $f(x)=1000(0.8)^{x}$
(4) $f(x)=1250(0.8)^{x}$

Try each choice in $Y=$ and choose the answer with the same table
9.

The function $f(x)$ is graphed below.

The domain of this function is
(1) all positive real numbers
(3) $x \geq 0$
(2) all positive integers
(4) $x \geq-1$
10.

The functions $f(x), q(x)$, and $p(x)$ are shown below.

$$
q(x)=(x-1)^{2}-6
$$

\mathbf{x}	$\mathbf{p}(\mathbf{x})$
2	5
3	4
4	3
5	4
6	5

When the input is 4 , which functions have the same output value?
(1) $f(x)$ and $q(x)$, only
(3) $q(x)$ and $p(x)$, only
(2) $f(x)$ and $p(x)$, only
(4) $f(x), q(x)$, and $p(x)$
11.

Materials A and B decay over time. The function for the amount of material A is $A(t)=1000(0.5)^{2 t}$ and for the amount of material B is $B(t)=1000(0.25)^{t}$, where t represents time in days. On which day will the amounts of material be equal?
(1) initial day, only
(3) day 5 , only
(2) day 2 , only
(4) every day

