Problem 0

$$
\frac{15}{100}=? \quad \begin{aligned}
& \text { How many ONES? (} 0 \text {) } \\
& \text { 15 hundredths split between the tenths place and } \\
& \text { the hundredths place. }
\end{aligned}
$$

Problem \mathbf{P}

Problem Q

How many ONES? (0) 42 hundredths split between the Tenths place and hundredths Place.
Problem R

Problem G:
Kayla -15 buttons 3 buttons per blouse How many blouses?
$3 \times(5)=15$

But on s $=3$ skipcount 15 to 5blouses

Problem I:
20 ants
5 equal rows
How many in each row?

$$
20=5 \times(4)
$$

$$
4^{a n+s}
$$

Problem J

$$
\frac{76}{100}=0.76
$$

How many ONES? (0)
76 hundredths split between tenths Place (7) and hundredths place (6).

Problem K

| ONES | hundredths |
| :--- | :--- | :--- |
| $\frac{8}{100}=0.08$ | How many ONES? (0) How many tenths?(0)
 How many hundredths? (units) (8) |
| | |

Problem P

Show 0.5 and 0.33 . Which has more: 5 tenths or 3 tenths +3 hundredths? How would you write smallest to largest?

Problem A．

ONES	tenths	hundredths
	$\square \square \square \square \square \square \square$	

$\frac{9}{10}=0.9$
How many ONES？（0）
How many tenths？（9）
How many hundredths？（0）

Problem B．

ONES	hundredths	
	ODロロロ	

Problem D: Solving 13 by 13 with an array and another way.

	1	2	3	4	5	6	7	8	9	10	11	12	13		
1															
2															
3															
4															
5															
6															
7															
8															
9															
10															
11															
12															
13															

Graphing explained:

$13 \times 13=(10+3) \times(10+3)$
(When graphing, start with the largest place value, the TENS place in this example.)

```
10 rows x 10 columns = 100 units
```

3 rows $\times 10$ columns $=30$ units

3 columns $\times 10$ rows $=30$ units

Count the single squares left = 9 units

$$
\begin{aligned}
& 100+30+30+9= \\
& 100+60+9=169 \text { units }
\end{aligned}
$$

Another method to multiply. (without the shortcut of carrying or regrouping)
Note: Students can carry \& regroup and other methods of working it out.

Think: $13=10+3$

13 (Start with the ONES place)
$\begin{array}{r}\times \quad 13 \\ \hline\end{array}$
9 (3 ones $x 3$ ones $=9$)
30 (3 ones $x 1$ ten (10) = 30)
30 (1 ten (10) x 3 ones = 30)
$+100(1$ ten $(10) \times 1$ ten $(10)=100)$
169

Problem E: Solving 11 by 13 with an array and another way.

	1	2	3	4	5	6	7	8	9	10	11	12	13		
1															
2															
3															
4															
5															
6															
7															
8															
9															
10															
11															
12															
13															

Graphing explained:

$11 \times 13=(10+1) \times(10+3)$
(When graphing, start with the largest place value, the TENS place in this example.)

10 rows $\times 10$ columns $=100$ units

1 rows $\times 10$ columns $=10$ units

3 columns $\times 10$ rows $=30$ units

Count the single squares left $=3$ units
$100+10+30+3=$
$100+40+3=143$ units

One other method to multiply. (without the shortcut of carrying or regrouping)
Note: Students can also carry \& regroup and other methods of working it out.

Think: $11=(10+1)$

$$
13=(10+3)
$$

11 (Start with the ONES place)
$\begin{array}{r}\times \quad 13 \\ \hline\end{array}$
3 (3 ones x 1 one = 3)
$30 \quad(3$ ones $\times 1$ ten $(10)=30)$
10 (1 ten $(10) \times 1$ one $=10$)
$+100(1$ ten $(10) \times 1$ ten $(10)=100)$
143

Problem F: Solving 13 by 15 with an array and another way.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1															
2															
3															
4															
5															
6															
7															
8															
9															
10															
11															
12															
13															

Graphing explained:

$13 \times 15=(10+3) \times(10+5)$
(When graphing, start with the largest place value,
the TENS place in this example.)
10 rows $\times 10$ columns $=100$ units

3 rows $\times 10$ columns $=30$ units

5 columns $\times 10$ rows $=50$ units

Count the single squares left $=15$ units

```
100+30+50+15=
100 + 80 + 15 =
100 + 95 = 195 units
```

One other method to multiply. (without the shortcut of carrying or regrouping)
Note: Students can also carry \& regroup and other methods of working it out.

Think: $13=10+3$

$$
15=10+5
$$

15 (Start with the ONES place)
$\begin{array}{r}\times \quad 13 \\ \hline\end{array}$
15 (3 ones $\times 5$ ones $=15$)
$30 \quad(3$ ones $\times 1$ ten $(10)=30)$
50 (1 ten (10) $\times 5$ ones $=50$)
$+100 \quad(1$ ten (10) $\times 1$ ten $(10)=100)$
195

Problem H. Arrange (0.56 and 0.7 from largest to smallest

- A student might look at the numbers, ignore the decimal point and think " 56 " is larger than " 7 "
- Have student draw the decimals or count out the paper rods for tenths and draw the hundredth place.
- The ONES place has the largest value - does one number have more ONES? (no)
- The tenths place has the next largest value - does one number have more tenths? (yes - 0.7that is the larger decimal)

ONES	tenths	hundredths

ONES	tenths	hundredths

1234										
1	-	$\stackrel{ }{ }$	-	$\stackrel{ }{ }$						
2	\bigcirc	\geqslant	$\stackrel{ }{ }$,						
3	7	\checkmark	\checkmark	\sim						
4	\checkmark	ν	$\stackrel{ }{ }$,						
5	\cdots	\checkmark	\checkmark	-						

Problem P. Write the Fact Family for this array.

How many rows? (5) How many columns? (4) How many units altogether inside ? (20) Fact Family: $5 \times 4=20 \quad 4 \times 5=20$

Problem Q. ? $\div 6=4$ (if student needs to figure this out) What starts the Fact Family in division? (The product/total \# inside the array) What are $6 \& 4$ in the array? (one is the \# of rows; the other is the \# of columns.) What do you want to use for the rows? 6 or 4 ? Set up the array and count the units inside. What is the missing number? (24) $(24 \div 6=4)$

 Do we have the Product/ total \# inside the array for this Fact Family? (yes)
So in an array, Do you want the " 8 " to be the rows or columns?

- If student chooses columns, have student number the columns 1-8. (see sample above)
- Now figure out how many rows by counting the units in each row, or skip counting by 8's up to 40.
- How many rows are needed? (5) The missing number is $5(40 \div 5=8)$
- If the student chooses ROWS, then have the student number the rows 1-8 and go and then fill in the columns one at a time until count to 40 .

Problem A.

Problem B.

ONES	tenths	hundredths
$\frac{80}{100}=$	Honer	
How many hundredths? (units) (0)		

Problem C.

ONES	tenths	hundredths
$\frac{8}{100}=0.08$	How many ONES? (0) How many tenths? (0) How many hundredths/units? (8)	

Problem D. \qquad x $7=56$ (If student needs assistance)
Thinking about Fact Families and arrays, what is missing? The \# for rows or the total product? (row)

- Start an array with 7 columns.
- Need to figure out how many rows by counting each unit in each row.
- What total are we trying to reach? (56)
- How many rows did we need to get to 56? (8)
- The missing number is $\underline{8}$. $(\underline{8} \times 7=56)$

Problem E. _ $\div 7=9$ (if student needs help)
Thinking about Fact Families and arrays, what is missing? The \# for rows or the total product? (total product).

- Which number do you want to use for the rows? 9 or 7? (this sample uses 7 rows)
- Number the rows and columns, then count.
- The product total is? (63) $\mathbf{6 3 \div 7 = 9}$

Problem L. Which number is closest to $100 ? \frac{2}{4}=\frac{4}{8}$

Problem D. Draw an array for 5×4
Do you want to make 4 rows with 5 columns or 5 rows with 4 columns?

- Officially, the first factor tells the number of rows or groups in the problem. This can help students decode word problems.
- 4 rows of 5
- 4 groups of 5
- In this case, however, the communitive law for mulitiplication works: $(4 \times 5)=(5 \times 4)$

Ask student to use the array graphic organizer to draw to show 5×4
*Not required from the question, but still ask:

- What does 5×4 equal? (20)

E. What's missing?
 \qquad $\div 7=9$ If student needs help:

 What is missing? The row or product total? (product/total)- How can we use the factors 7 and 9 to find out the product or total?
- (multiply $\mathbf{7}$ x 9; skip count; make an array)

Making an Array: Write numbers to show 7 rows and 9 columns.
Do you know, or can you figure out, what 5×9 equals? (45)

- Find the 7 rows and make a block for 5×9.
- Write " 45 " instead of counting every square.

Do you know what 2×9 equals? (18)

- Now that we know one chunk equals 45 and the other part equals 18, what can we do? (Add: $45+18=$?)

What is the solution for $\subseteq \mathcal{O J} \div \mathbf{7}=\mathbf{9}$?

ONES	tenths	hundredths

Problem I: Write decimal for 2/100

- Are there any ONES? (no)
- Write " 0 " in the ONES place.
- How many tenths are there?(none, 0)
- Write " 0 " in the tenths place.
- How many hundredths, or units are there? (2)
- Draw 2 units in the hundredths place and write the number " 0 "
- How do you write the decimal?

$$
\frac{2}{100}=0.02
$$

ONES	tenths	hundredths

J. Write decimal for $3 / 4$.

If student needs help:

- To find the decimal
- We can divide the numerator (3) by the denominator (4), or
- Figure out if the denominator ($4^{\text {ths }}$) has an equivalent fraction in $10^{\text {ths }}$ or $100^{\text {ths }}$.
If looking for equivalent $10^{\text {th }}$ or $100^{\text {th }}$,
- Do "fourths" have an equivalent fraction to tenths? Does 4 x (anything) = 10? (no)
- Do fourths have an equivalent fraction to hundredths? Does 4 x (anything) $=100$? How about 4 quarters? Do 4 quarters make $\$ 1.00$? or 100 cents? (yes)
Since $4 \times 25=100$, let's figure out how many hundredths 3 fourths make:

$$
\frac{3}{4} \times \frac{25}{25}=\frac{75}{100}=0.75
$$

