

Topic 1

Basic Geometry and Triangles

Table of Contents

Basic Geometry

Definitions.......................pg. 2-3
Examples..........................pg. 4-6
Triangles
Definitions.......................pg. 7
Examples..........................pg. 8-9
Side/Angle........................pg. 9-10
Right Triangle...................pg. 11-13

Vocabulary Word	Definition	Picture
Angle		
Acute Angle		
Obtuse Angle		
Right Angle		
Congruent Angles		
Adjacent Angles		

Vocabulary Word	Definition	Picture
Angle		
Bisector		
Supplementary Angles		
Complementary		
Angles		
Vertical		
Angles		
Linear		
Pair		

Examples

1) Angles 1 and 2 are complementary. If $m \angle 1=3 x-23$ and $m \angle 2=4 x+1$, find the value of x and the measures of the angles.
2) Angles 3 and 4 are supplementary. If $m \angle 3=75-x$ and $m \angle 4=10 x-3$, find the value of x and the measures of the angles.
3) An angle is four more than three times its supplement. Find the measure of both angles.
$4 \angle A B C$ and $\angle C B D$ are a linear pair. The measure of $\angle A B C$ is twelve less than twice the measure of $\angle C B D$. Find the measure of the smaller angle.

4) $\overrightarrow{Q S}$ bisects $\angle P Q R$. If $\angle P Q R=6 y-28$ and $\mid 6) \angle J K L$ is a right angle. If $\mathrm{m} \angle J K L=\frac{1}{3} x+4$, $\angle R Q S=2 y+1$, find $\mathrm{m} \angle P Q R$. find the value of x.
5) $\angle A B C$ is formed by adjacent angles $\angle A B D$ and $\angle C B D$. If $\mathrm{m} \angle A B C=62$, $\mathrm{m} \angle A B D=4 x-2$, and $\mathrm{m} \angle C B D=x-1$, find the measure of both angles.
6) $\overleftrightarrow{A C}$ and $\overleftrightarrow{B D}$ intersect at E . If $\mathrm{m} \angle A E D=2 x-9$ and $\mathrm{m} \angle B E C=89$, find the value of x .

Challenge!

9) Two complementary angles are in the ratio of $7: 8$. What is the number of degrees in the smaller angle?
10) $\overrightarrow{B D}$ bisects $\angle A B C$. If $m \angle A B D=2 x^{2}$ and $m \angle C B D=x^{2}+4 x$, find $m \angle A B C$

Practice

1) $\overrightarrow{G H}$ bisects $\angle F G I$. Find $m \angle F G I$.

2) The measure of the supplement of an angle is 30 degrees more than twice the measure of the angle. Find the degree measure of the angle.

Triangles

	Definition	Picture
Scalene		
Isosceles		
Equilateral		
Right		

The sum of the angles of a triangle is always

Triangle Word Problems

1) In $\triangle L M N, m \angle L=4 x-6, m \angle M=5 x-26$, and $m \angle N=x+2$. Find the measure of each angle of the triangle. What type of triangle is $\triangle L M N$?
2) The measure of the base angles of an isosceles triangle are each $2 x-18$. The vertex angle measures $3 x-1$. Find the measure of each angle of the triangle.
3) In $\triangle R S T, m \angle R S T=46^{\circ}$ and $\overline{R S} \cong \overline{S T}$. Find $m \angle S T R$.
4) In right triangle $\triangle A B C, \angle B$ is a right angle. If $m \angle A=3 x+12$ and $m \angle C=2 x-2$, find the measure of each angle in $\triangle A B C$.
5) In equilateral triangle $\triangle E F G, m \angle E=2 x-12$. Find the value of x.

Side and Angle Relationships

Examples

1) The measures of the angles of $\triangle A B C$ are in the ratio $5: 6: 7$ respectively. List the sides in order from smallest to largest.
2) The sides of a triangle can be represented by the expressions $2 x-1,3 x+2$, and $2 x+5$. If the perimeter of the triangle is 34 inches, circle the largest angle.

Finding the Third Side of a Right Triangle

Find the length of the third side of the triangles below to the nearest hundredth.

Given a rectangle with a width of 8 cm and a length of 12 cm , find the length of the diagonal to the nearest tenth.

A painter leans a 12-foot ladder up against a wall. If the base of the ladder is 5 feet away from the wall, how high up the wall, to the nearest tenth, does the ladder reach?

What is a perfect square?
\qquad
\qquad
\qquad
\qquad

Find the length of the third side of the triangles below in simplest radical form.

Prove it's a right triangle:

A triangle has sides with lengths of $3 \mathrm{~mm}, 4 \mathrm{~mm}$, and 5 mm . Is this triangle a right triangle? Justify.

A triangle has sides with lengths of $6 \mathrm{~cm}, 12 \mathrm{~cm}$, and 13 cm . Is this triangle a right triangle? Justify.

Mixed Review

1) $\angle 1$ and $\angle 2$ are complementary. If $\mathrm{m} \angle 1=2 x-1$ and $\mathrm{m} \angle 2=4 x-5$, find $\mathrm{m} \angle 2$
2) $\angle 1$ and $\angle 2$ are supplementary. If $m \angle 1$ is six less than five times $\mathrm{m} \angle 2$, find $\mathrm{m} \angle 1$
3) If $\mathrm{m} \angle P R O=132^{\circ}$, find $\mathrm{m} \angle P R M$

4) $\overline{S T}$ and $\overline{M R}$ intersect A . If $\mathrm{m} \angle S A M=9 x+7$ and $\mathrm{m} \angle R A T=12 x-11$, find $\mathrm{m} \angle S A M$ and $\mathrm{m} \angle M A T$.
5) $\angle L O V$ is bisected by $\overrightarrow{O E}$. If $\mathrm{m} \angle L O V=68^{\circ}$, and $\mathrm{m} \angle L O E=5 x-1$, find x .
6) The measures of the angles of a triangle can be represented by the expressions $14 x$, $6 x-10$, and $4 x+10$. Find the value of x. What type of triangle is this?
7) $\triangle Y O R$ is isosceles with $\overline{Y R} \cong \overline{O R}$ and $\mathrm{m} \angle Y R S=80^{\circ}$. If $\mathrm{m} \angle Y S R=32^{\circ}$, find $\mathrm{m} \angle S Y O$

8) $\triangle F O X$ is a right triangle with a right angle at $\angle O$. If $\mathrm{m} \angle F=x-2$ and $\mathrm{m} \angle X=4 x-3$, find the measure of the smallest angle. What side is the shortest side?
9) $\triangle H A T$ is an isosceles triangle with $\overline{H A} \cong \overline{T A}$. The measure of the vertex angle is $x+15$ and the measure of each of the base angles is $2 x-5$. Find the value of x.
10) In $\triangle A B C, m \angle A=41^{\circ}, m \angle B=x+14$, and $m \angle C=5 x+11$, find the value of x and identify the longest side of $\triangle A B C$.
11) Find the length of the missing side in simplest radical form.

12) Find the length of the missing side in simplest radical form.

