

Table of Contents

Slope	.pg. 2 – 3
Parallel vs. Perpendicular	pg. 4 – 6
Parallel Lines cut by a Transversal	.pg. 7 – 9

<u>Practice</u>: Use the slope formula to find the slope of the line passing through the following points.

1. (0,0) and (4,8)

2. (1,5) and (3, 9)

3. (-1, 3) and (2,3)

4. (4,2) and (4,1)

For each of the following, count the slope of the line on the graph.

Practice

Directions: Use the slope formula to find the slope. Then check on the graph by counting.

1. Find the slope of the line between (-2, -3) and (1, 3).

2. Find the slope of the line between (-2, 5) and (4, -4).

3. Find the slope of the line between (-1, 3) and (2,3)

4. Find the slope of the line between (4,2) and (4,1)

Parallel lines have SAME slopes.

Perpendicular lines have NEGATIVE RECIPROCAL slopes.

Examples

1. Are the lines $y = -\frac{1}{3}x + 5$ and $y = -\frac{1}{3}x - 1$ parallel,

perpendicular or neither? Graph the lines to prove your answer.

2. Are the lines $y = \frac{3}{2}x$ and $y = -\frac{2}{3}x + 3$ parallel, perpendicular or neither? Graph the lines to prove your answer.

3. Are the lines $y = \frac{1}{2}x - 4$ and y = 2x - 3 parallel, perpendicular or neither? Graph the lines to prove your answer.

4. Which line is perpendicular to the line whose equation is 5y + 6 = -3x?

1)
$$y = -\frac{5}{3}x + 7$$

2) $y = \frac{5}{3}x + 7$
3) $y = -\frac{3}{5}x + 7$
4) $y = \frac{3}{5}x + 7$

Practice

For each of the following, decide whether the set of lines are parallel, perpendicular or neither. Place the letter in the appropriate box.

Parallel	Perpendicular	Neither		

A.		В.		С.		D.
	y = 3x - 1		y = 2x	y = 2x		$y = \frac{1}{2}x$
	$y = \frac{-1}{3} + 4$		y = 2x + 4	y = -2x	+ 4	y = 2x + 4
		E.	F.		G.	
		$v = \frac{1}{r}$		2x + 3y = 6	-x + 3y	v = 6
		$y = 2^{x}$		2y - 3x = 9	y - 3x =	= 9
		2y = x + 4	ŀ			

What is the slope of a line that is parallel to the line that passes through the points(-3,-1) and (1,2)?

What is the slope of a line that is perpendicular to the line that passes through the points (-3,-1) and (1,2)?

Types of Angles that are formed:

Alternate Interior Angles —

Alternate Exterior Angles —

Corresponding Angles —

Same Side Interior Angles —

Preparing Students for Success in Geometry Class Handout: Topic 3 of 4 – Parallel and Perpendicular Lines

Examples

Directions: Solve for *x* and each angle.

Ex. 1

Ex. 4

Ex. 5

Practice

For each of the following, identify the type of angles and then solve each of the following for x.

