

Educator Packet

解Unit 1

Warm up: Target Number

- The task is to represent the target number in different ways in one minute. Do a couple samples with students before starting the timer.
- Set the timer for one minute.
- Educators play along, and write examples to share related to the students' required math fluencies:
- At the end of the minute, students give ONE example at a time, going around the group a couple of times until all DIFFERENT responses are used. Students need to give different ways to represent the number. Writing, " $7+3$ " is different from writing, " $3+7$ ". Drawing 7 circles and 3 circles is different from writing, " $7+3$."

Examples of some different ways to represent the number 10:

$7+3$	$10+0$	17-7	2×5	100 / 10	20/2
$3+7$	$0+10$	ten	5×2	10/1	10×1
One dozen eges	away 2	$\begin{aligned} & 000 \\ & 000 \\ & 2+2+ \end{aligned}$			$\text { - } 90$

Required [Math] Fluencies

Kindergarten	Add and subtract within 5	Procedural Fluency: can easily use a process to figure out the answer.
Grade 1	Add and subtract within 10	Procedural Fluency: can easily use a process to figure out the answer.
Grade 2	Single digit sums and differences (automaticity by the end of Grade 2);	Automaticity by the end of Grade 2: Knows the answer without stopping to use a process to figure out the answers.
Grade 2	Add and subtract within 100	Procedural Fluency: can easily use a process to figure out the answer.

Suggested Target Numbers: Start with 12 and 15 for everyone for the first two sessions. Afterwards, numbers over 20 are fair for all grade bands except for the DOG ICON, which should just use numbers under 20.
12
15
24
36

60
48
100
45

90
50
75

Other choices 20 or less: $9 \quad 18 \quad 6 \quad 20$

FAMILY FUN GAME Directions

All ages of students play the game together. On their turn, students use the game cards from their own packet to solve math problems at their own level.

Key Points:

- Unit 1 introduces the game and some of the Math Matters skills.
- Units 2 through 5 provide students practice all of the core math skills, except fractions, throughout the summer.

Process:

1. Each Student Packet has its own Family Fun Game Cards, allowing each student to participate together with students who have different skills to practice.
2. Do not cut the cards apart! Starting with Lesson 2, the three cards in each row will practice the same skill.
a. Many students will read ahead, solving problems, to find the "easiest" ones while waiting for their next turn.
3. Instead of students drawing a card, students select a problem from their packets. Students can select problems in the order they choose, BUT ask students to solve one problem from each row, before repeating from the row, so they practice each skill.
4. Game Directions are on the game board. Game boards are at the end of each Student Packet, so they are easy to pull off and use.
5. The best way to move around the board is to use dice. The Student Packets have a "Do It Yourself (DIY)" version to toss a small wad of paper onto a board of numbers.

Do It Yourself (DIY) Game Pieces

Player: Cut the outside of the double trapezoid. Fold in half to make the player. If more than one student has the same color, students can write their name on the playing piece.

If you don't have a 6-sided die: Cut around the jagged "splotch" shape and wad the paper into a ball. Toss the ball onto the number board to find number of spaces to move.

BLM Unit 1 Family Fun Game Answer Key - All Levels

Problem Letter	Kinder (pink)	$\begin{gathered} 1-2 \\ \text { (blue) } \end{gathered}$	$\begin{gathered} \text { 3-4 } \\ \text { (green) } \end{gathered}$	$\begin{gathered} 5-6 \\ \text { (yellow) } \end{gathered}$	$\begin{gathered} 7-8 \\ \text { (peach) } \end{gathered}$
A	$5 ¢$ (cents)	\$32	0.15	2.35	18 boys : 22 girls
B	$6 ¢$ (cents)	\$42	0.2	1.2 or 1.20	11 girls : 20 total
C	$7 ¢$ (cents)	\$55	0.42	0.42	12 boys : 27 total
D	$8 ¢$ (cents)	\$78	0.05	13\%	16 red : 27 total
E	$9 ¢$ (cents)	\$62	1/4	1\%	9 cups
F	$10 ¢$ (cents)	\$82	2/8	34\%	$11 / 3$ cups
G	$6 ¢$ (cents)	\$28	1/3	25\% and 1/4	18 cups
H	$7 ¢$ (cents)	\$12	2/6	50\% and 1/2	10 cups
I	$8 ¢$ (cents)	\$8	10	75\% and 3/4	7.5 ounces
J	10¢ (cents)	\$10	3		\$36
K	13¢ (cents)	\$32	9	3/8	25 shirts
L	15¢ (cents)	\$25	1	3/5	16 shirts
M	11¢ (cents)	\$15	6	3/8	20 blocks
N	12¢ (cents)	\$21	3	2/5	7.2 minutes
O	$9 ¢$ (cents)	\$45	15	$3 / 6$ or 1/2	Martin runs faster. Martin runs $12 \mathrm{blks} / 6$ min and Alicia runs 10 blks/6 min
P	14¢ (cents)	\$37	8	8.2	5 gallons
Q	13¢ (cents)	\$3	9	9.01	425 miles
R	16¢ (cents)	\$19	28	151.2	\$5.00

CGI CHARTS:

With a few changes, this chart is in New York State’s Next Generations Learning Standards for Pre-K to Grade 2, titled, "Common Addition and Subtraction Situations."

Process:

1. Look for the word problem(s) on the chart with a STAR -
2. For Dog Icon packets, start with the "ADD TO - (Result Unknown)" and the "TAKE FROM (Result Unknown)" word problems from the Unit's CGI Chart.
a. If a student struggles, stick with these for the summer so the student becomes secure. Otherwise, you can proceed to the "PUT TOGETHER/TAKE APART - (Total Unknown)" word problems.
3. Have manipulatives and paper for students to choose either medium for solving the problem.
4. Read the problem to students once. Note: Each problem has three sets of numbers for you to choose from to fill in the blanks. Use the set that works best for the student(s).
5. Read the problem again, and then teach students to take notes.
a. Prompt students with questions, and model writing notes. (Kindergarten Students Packets have a mostly blank page called, "Word Problem Work Space," to use for this.)
b. What did Deena start with? 5 pennies. How can we write? D 5 (or draw 5 circles)
c. What happens next? She gets 3 more. How can we write? +3 (or draw 3 circles)
d. What question do we have to answer? How many does Deena have now? How can we write this? D has \qquad ?
6. Give students time to solve. (If struggling, prompt with, "What number does the problem start with?" Do you want to draw this or use manipulatives to recreate it?)
7. Ask students to explain their process before asking them for an answer. This allows students time to self-correct and gives the Educator a clue about how the student is thinking.
8. At the end, look at the final answer together, to decide if it solves the problem. How would you say the answer in a sentence? ("Deena has 8 pennies now.")

$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	(Result Unknown) Deena was lucky. She had \qquad pennies. Mrs. Green gave her \qquad pennies. How many pennies does Deena have now? $(1,4) \quad(5,3) \quad(10,4)$	(Change Unknown) Deena had \qquad pennies. How many more pennies will Deena need to get so that she will have \qquad pennies to buy her mother a present? $(3,8)(5,10)(10,13)$	(Start Unknown) Deena was lucky. She found some money. Mrs. Green gave her \qquad . Now Deena has \qquad . How much money did Deena have to start with? $(3 \$, 10 \$)(5 \$, 15 \$)(10 \$, 20 \$)$
	Deena had \qquad pennies. She spent \qquad pennies for a present. How many pennies does she have now? $(10,5)(15,5)(100,25)$	(Change Unknown) Deena had \qquad \$. She spent some on a present. Now she has \qquad \$. How much money did she spend? $(10,6) \quad(15,9) \quad(100,25)$	(Start Unknown) Deena had some money. She spent \qquad \&. Now she has \qquad \$. How much money did she have to start with? $(4,6) \quad(18,9) \quad(20,5)$
	(TOTAL Unknown) Deena had \qquad pennies and \qquad nickels. How many coins did she have? $(5,20) \quad(10,30) \quad(50,50)$		
	(Difference Unknown) Deena had \qquad pennies. Her brother, Sam, had \qquad pennies. How many more pennies did Deena have than Sam? $(10,5) \quad(20,10) \quad(25,10)$	(BIGGER Unknown) Deena had \qquad pennies. Her brother, Sam, had \qquad more pennies than Deena had. How many pennies did Sam have? $(10,5) \quad(20,10) \quad(25,10)$	(SMALLER Unknown) Deena spent \qquad pennies. That's \qquad pennies more than Sam spent. How many pennies did Sam spend? $(5,3) \quad(10,5) \quad(25,25)$

Unit 1 CGI Problems for Deena's Lucky Penny

$\begin{aligned} & \frac{5}{0} \\ & \frac{1}{3} \\ & \hline \end{aligned}$	(Resultados desconocidos) Deena era afortunada. Tenía \qquad centavos. La Sra. Green le dio \qquad centavos. ¿Cuántos centavos tiene Deena ahora? $(1,4) \quad(5,3) \quad(10,4)$	(Cambio desconocido) Deena tenía \qquad centavos. ¿Cuántos centavos de más tiene que buscar si necesita \qquad centavos para comprarle un regalo a su mamá? $(3,8) \quad(5,10) \quad(10,13)$	(Inicio desconocido) Deena fue afortunada. Encontró algo de dinero. La Sra. Green le dio \qquad Ahora Deena tiene \qquad ¿Cuánto dinero tenía Deena al empezar? $(3 \$, 10 \$)(5 \$, 15 \$)(10 \$, 20 \$)$
$\begin{aligned} & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	(Resultados desconocidos) Deena tenía \qquad centavos. Se gastó \qquad centavos comprando un regalo. ¿Cuántos centavos le quedan? $(10,5) \quad(15,5) \quad(100,25)$	(Cambio desconocido) Deena tenía \qquad \$. Se gastó algo de dinero comprando un regalo. Ahora tiene \qquad \$. ¿Cuánto dinero se gastó? $(10,6)(15,9)(100,25)$	(Inicio desconocido) Deena tiene algo de dinero. Se gastó \qquad \$. Ahora tiene \qquad \pm. ¿Cuánto dinero tenía al empezar? $(4,6) \quad(18,9) \quad(20,5)$
	(Todo desconocido) Deena tenía \qquad cent monedas de cinco cent ¿Cuántas monedas ten $(5,20) \quad(10,30)$	(Todo des Deena t centavo cinco ce de cinco	ocido) \qquad monedas. \qquad fueron lo demás monedas de vos. ¿Cuántas monedas ntavos tenía? $(50,40) \quad(100,60)$
	(Difference Unknown) Deena tenía \qquad centavos. Su hermano Sam tenía \qquad centavos. ¿Cuántos centavos mas tenía Deena que Sam? $(10,5) \quad(20,10) \quad(25,10)$	(Quantity Unknown) Deena tenía \qquad centavos. Su hermano Sam tenía \qquad más centavos que Deena. ¿Cuántos centavos tenía Sam? $(10,5)(20,10)(25,10)$	(Referent Unknown) Deena se gastó \qquad centavos. Es \qquad centavos más que se gastó. ¿Cuántos centavos se gastó Sam? $(5,3) \quad(10,5) \quad(25,25)$

Math Objectives

- Share a snack in half.
- Explain why each portion is half.

Language Objectives

- Explain why each portion is half.
- Share-write what is a half.

Materials:

TEACHER:

Chart paper with question: How do you know that each portion is half? Put a copy of the record sheet string cheese cut apart at the top of the chart with the question.

TEACHER DEMO

- BLM String Cheese Snack Fractions,
- 1 large string cheese
- Pastic knife
- Paper towel
- Paper plate

STUDENT ACTIVITY (per

partner pair):

- BLM String Cheese Snack Fractions
- BLM String Cheese to Share
- 1 string cheese per pair
- 1 plastic knife
- 2 paper dessert plates
- 2 paper towels
- 2 pair scissors
- 2 rulers and 2 markers
- 2 glue sticks

Unit 1, Lesson 3

Kinder

Snack Fractions

Children should wash their hands before this activity if using food items.

Snack Fractions

As part of each math day, please include a quick "Snack Fraction" activity. If your district/school does not allow any snacks to be given to students, please alter the activity by providing the paper shape to be divided into fractional parts.

Objective:

Today you are going to share a snack with one other friend. The snack will be cut into two pieces. You will be able to tell each other the fractional name of the pieces. You will be able to draw a line on a picture to show the parts that you have.

TODAY: Teacher demonstration of halves

"I have a piece of string cheese that I want to share with a friend. How can I do that? (Wait for answers.) I want the portions to be fair shares, that is, both of us have the same amount of the string cheese.

Here is how I will cut the string cheese into two pieces so that my friend and I will have fair shares. (Cut string cheese.) Does anyone know what we call this fractional part of the string cheese? (Hold up a half and wait for answers.) We call this a half. Why is this portion a half? (Wait for answers.) It is half because it is one out of two equal pieces (compare the 2 pieces side by side so students see they are equal pieces).

Ask the students:

- What fractional part of my snack will my friend receive? (onehalf)
- How do you know? (The piece is one out of two equal pieces.)
- What fractional part am I receiving? (half)
- How do you know? (You have one out of two equal pieces.)

Before dividing the actual snack, give each child the BLM String Cheese Snack Fractions and the String Cheese picture. Have the student draw a line, cut the paper model in half, and then glue to the BLM String Cheese Snack Fractions sheet.

When those sheets are collected, divide the students into partners, giving each pair the set of materials listed. Tell them to share the snack into fair shares, and be able to tell you when you come around if they each have half, and how they know. Circulate and ask as students enjoy their snacks.

