Grade 8 Math: Instructional Focus and Fluency

Transitioning to the NYS Next Generation Math Learning Standards for Grades K-8, Effective September 2022

Instructional Focus	Developmental Focus	Instructional Consideration (via Standards)
Formulate and reason about expressions and equations, including modeling an association in bivariate data with a linear equation, and solving linear equations and systems of linear equations.	Recognize equations for proportions ($\mathrm{y} / \mathrm{x}=\mathrm{m}$ or $\mathrm{y}=\mathrm{mx}$) as special linear equations ($y=m x+b$) $>$ understanding that the constant of proportionality (m) is the slope, and the graphs are lines through the origin know the parts of the equation (x, y)represents the point, m represents the slope, and b represents the y intercept Understand that the slope (m) of a line is a constant rate of change Express a linear relationship between two quantities and interpret components of the relationship (such as slope and y intercept) in terms of the situation e.g., Compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.	NY-8.EE. 5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. NY-8.EE. 6 Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation y $=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b. NY-8.EE. 7 Solve linear equations in one variable.

Instructional Focus	Developmental Focus	Instructional Consideration (via Standards)
Formulate and reason about expressions and equations, including modeling an association in bivariate data with a linear equation, and solving linear equations and systems of linear equations continued...	(POST-TEST)* Solve systems of two linear equations in two variables and relate the systems to pairs of lines in the plane(intersect, parallel, or are the same line) (systems are POST-TEST)* Apply linear and systems of linear equations to solve application problems $>$ one solution, no solutions, infinite solutions (may need to simplify) > using rational number coefficients > involving combining like terms, and using the distributive property	NY-8.EE. 8 (POST-TEST)* Analyze and solve pairs of simultaneous linear equations.
Grasp the concept of a function and use functions to describe quantitative relationships a function as a rule that assigns to each input exactly one output.	Understand that functions describe situations where one quantity determines another $>$ e.g., where the function is increasing or decreasing or when the function is linear or non-linear Translate among representations and partial representations of functions and describe how aspects of the function are reflected in the different representations $>$ function notation is NOT required in grade 8 > include description, table, and graph representations > include rate of change and initial value $>$ include linear and non-linear	NY-8.F. 4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values. NY-8.F. 5 Describe qualitatively the functional relationship between two quantities by analyzing a graph. Sketch a graph that exhibits the qualitative features of a function that has been described in a real-world context.

Instructional Focus	Developmental Focus
Analyze two- and three-dimensional space and figures using distance, angle, similarity, and congruence, and understanding and applying the Pythagorean Theorem.	Use translations, rotations, reflections, and dilations to describe, analyze, and solve problems involving two dimensional figures $>$ lines/line segments mapped to lines/line segments $>$ angles mapped to angles > parallel lines mapped to parallel lines $>$ establishing congruence/similarity using properties of transformations $>$ lines of reflection are limited to both axes and lines of the form $\mathrm{y}=\mathrm{k}$ and $\mathrm{x}=\mathrm{k}$, where k is a constant when graphing rotations are limited to 90 and 180 degrees about the origin (unless otherwise specified, rotations are assumed to be counterclockwise) Show that the sum of the angles in a triangle is the angle formed by a straight line, and that various configurations of lines give rise to similar triangles because of the angles created when a transversal cuts parallel lines Understand the statement of the Pythagorean Theorem and its converse, and why the Pythagorean Theorem holds

Instructional Focus	Developmental Focus	Instructional Consideration (via Standards)
Analyze two- and three-dimensional space and figures using distance, angle, similarity, and congruence, and understanding and applying the Pythagorean Theorem continued...	Apply the Pythagorean Theorem to find distances between points on the coordinate plane, to find lengths, and to analyze polygons.	NY-8.G. 5 Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. NY-8.G. 6 Understand a proof of the Pythagorean Theorem and its converse. NY-8.G.7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real world and mathematical problems in two and three dimensions. NY-8.G.8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.
Fluency	Fluency development	Fluency Standard
Solve systems of linear equations in two variables graphically, algebraically, and using a table. (Procedura).	(POST-TEST)* Solving systems algebraically will be limited to at least one equation containing at least one variable whose coefficient is 1 . Algebraic solution methods include elimination and substitution.	-8.EE.8b (POST-TEST)* Solve systems of linear equations in two variables with integer efficients: graphically, numerically using a le, and algebraically. Solve simple cases by pection.

*(POST-TEST) refers to standards content that is taught after the NYS grade 3-8 assessment. This time typically occurs late April June.

