

Educator Packet

Warm up: Target Number

- The task is to represent the target number in different ways in one minute. Do a couple samples with students before starting the timer.
- Set the timer for one minute.
- Educators play along, and write examples to share related to the students' required math fluencies:
- At the end of the minute, students give ONE example at a time, going around the group a couple of times until all DIFFERENT responses are used. Students need to give different ways to represent the number. Writing, " $7+3$ " is different from writing, " $3+7$ ". Drawing 7 circles and 3 circles is different from writing, " $7+3$."

Examples of some different ways to represent the number 10:

Required [Math] Fluencies

Kindergarten	Add and subtract within 5	Procedural Fluency: can easily use a process to figure out the answer (for example, using manipulatives, diagrams)
Grade 1	Add and subtract within 10	Procedural Fluency
Grade 2	Single digit sums and differences (automaticity by the end of Grade 2); Add and subtract within 100	Automaticity by the end of Grade 2: Knows the answer without stopping to use a process to figure out the answers.
Grade 3	Single digit products and quotients (product automaticity by the end of Grade 3)	Automaticity for Products by the end of Grade 3
	Add and subtract within 1,000	Procedural Fluency
Grade 4	Add and subtract within 1,000,000	Procedural Fluency

Suggested Target Numbers: Start with 12 and 15 for everyone for the first two sessions. Afterwards, numbers over 20 are fair for all grade bands except for the DOG ICON, which should just use numbers under 20.
12
15
24
36

60
48
100
45

90
50
75
More ${ }^{2}$ choices: 9
18
6
20

FAMILY FUN GAME Directions

Key Points:

- Starting with Unit 2, the Family Fun Game gives students repeated practice in each of the Math Matters skills. This allows students to practice all of the skills throughout the summer.

Process:

1. Each Student Packet has its own Family Fun Game Cards, allowing each student to participate with students who have different skills to practice.
2. Do not cut the cards apart! Starting with Lesson 2 , the three cards in each row will practice the same skill.
3. Instead of students drawing a card, students select a problem from their grade band sheets. Students can select problems in the order they choose, BUT ask students to solve one problem from each row, before repeating from the row, so they practice each skill.
4. Game Directions are on the game board. Game boards are at the end of each Student Packet, so they are easy to pull off and use.
5. The best way to move around the board is to use dice. The Student Packets have a "Do It Yourself (DIY)" version to toss a small wad of paper onto a board of numbers.
6. Many students end up reading all of the problems in between turns as they search for the "best" ones to answer.

Do It Yourself (DIY) Game Pieces

Player: Cut the outside of the double trapezoid. Fold in half to make the player. If more than one student has the same color, students can write their names on the playing piece.

If you don't have a 6-sided die: Cut around the jagged "splotch" shape and wad the paper into a ball. Toss the ball onto the number board to find number of spaces to move.

BLM Unit 2 Family Fun Game Answer Key - All Levels

Problem Letter	Kinder	1-2	3-4	5-6	7-8
A	10 ¢	\$46		1.25	50\% increase
B	10 ¢	\$59	$5 \times 4=20 ; 20 \div 4=5$	1.21	75\% increase
C	12 ¢	\$45	$3 \times 6=18 ; 18 \div 6=3$	0.22	20\% decrease
D	11 cents	\$40	42	three-sixths or half	$\frac{8 \mathrm{oz}}{1 \mathrm{c}}=\frac{x \mathrm{oz}}{3 \mathrm{c}}$
E	10 cents	\$90	8	five-eighths	$\frac{16 \mathrm{oz}}{1 \mathrm{lb}}=\frac{x \mathrm{oz}}{4 \mathrm{lb}}$
F	12 cents	\$85	45	three-eighths	$\frac{36 \mathrm{in}}{1 \mathrm{yd}}=\frac{72 \mathrm{in}}{x \mathrm{yd}}$
G	15 cents	\$37	5 blouses	\$108.55	\$0.60 or 60¢
H	14 cents	\$52	\$4 each	6.4 miles	\$1.75
I	18 cents	\$26	4 in each row	50.2 miles	\$0.90 or 90 ¢
J	$6+4$	$\begin{aligned} & 2+7=9 \\ & 7+2=9 \\ & 9-2=7 \\ & 9-7=2 \end{aligned}$	0.76	9	\$13.14
K	$5+5$	$\begin{gathered} 7+3=10 \\ 3+7=10 \\ 10-7=10 \\ 10-3=7 \end{gathered}$	0.08	7	\$18.90
L	$1+9$	$\begin{aligned} & 6+9=15 \\ & 9+6=15 \\ & 15-9=6 \\ & 15-6=9 \end{aligned}$	0.19	9	\$15.90
M	$\begin{gathered} 10,20,30,40, \\ 50,60,70,80, \\ 90,100 \\ \hline \end{gathered}$	22 perch	$\frac{9}{10}$	14	\$2.59
N	9 ants	6 fish were left	6/10	42	\$7.50
0	5 bugs	10 tadpoles left	4/10	16	\$4.58
P	4 coyotes	8, 2 make 10	$0.33,0.5$	one-thrid	\$1.64
Q	7 sage leaves	1,9 make 10	11.99	three-sixths or half	\$2.36
R	$5-1=4$	3,7 make ten	Drew	five-eighths	\$3.75

CGI CHARTS:

With a few changes, this chart is in New York State’s Next Generations Learning Standards for Pre-K to Grade 2, titled, "Common Addition and Subtraction Situations."

Key Points:

- Allows students to solve the problem in a way they understand, instead of the "right" way.
o NY-1.OA. 1 - Use addition and subtraction within 20 to solve one-step word problems involving situations of adding to, taking from, putting together, taking apart, and/or comparing, with unknowns in all positions.
- ...using objects, drawings and equations with a symbol to represent the unknown.

O NY-2.OA.1 - Use addition and subtraction within 100 to solve one-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions.

- Mastery of all word problems types on the "Common Addition and Subtraction Situations" Chart by end of Grade 2.

Process:

- Pick one word problem.
o Start easy (top left corner of CGI Chart, then work to the left and down as students show confidence.
o Or use the STAR (Grade 1) $\boldsymbol{*}$ or the TRIANGLE (Grade 2) $\boldsymbol{\Delta}$ for types of word problems on the summer math assessments.
- Read the problem to students, using the choice of differentiated numbers to fill in the blanks.
- Read again and encourage students to take notes on the graphic organizer. (modeling, teaching the first time)
- Give students time to solve. (If struggling, prompt with, "What number does the problem start with?" Do you want to draw this or use manipulatives to recreate it?)
- Have manipulatives and paper for students to choose either medium for solving the problem.
- Ask students to explain their process before asking them for an answer. This allows students time to self-correct and gives the Educator a clue about how the student is thinking.
- At the end, look at the final answer together, to decide if it solves the problem. How would you say this in a sentence?

Unit 2 CGI Problems for Water Habitats

Add To	(Result Unknown) There were \qquad alligators in the swamp. \qquad more alligators crawled into the swamp. How many alligators are in the swamp now? $(7,3)(13,25)(15,25)$	Alligator in the swamp caught \qquad fish. How many more fish will he need to catch in order to have \qquad fish, enough for his supper? $(2,8) \quad(11,21) \quad(10,12)$	There were some hippos in the river. \qquad more hippos joined them. Now there are \qquad hippos in the river. How many hippos were in the river to start? $(4,6)(5,10)(10,16)$
Ta	(Result Unknown) There were \qquad eggs in duck nests in the pond. \qquad of them hatched. How many eggs are there now? $(10,5)(22,2)(13,9)$	(Change Unknown) There were \qquad duck eggs in nests in the pond. Some of them hatched. Now there are \qquad duck eggs. How many eggs hatched? $(10,7)(16,6) \quad(24,5)$	There were some duck eggs in nests in the pond. \qquad of them hatched. Now there are \qquad eggs. How many eggs were there to start? $(2,8)(13,12) \quad(21,8)$
Put Together/ Take Apart	(Total Unknown) There were \qquad sea stars and \qquad sea snails in the tide pool. How many sea creatures were in the tide pool all together? $(2,8)(10,32)(17,19)$	(Addend Unknown) There were \qquad sea creatures in the tide pool. \qquad were sea stars and the rest were sea snails. How many sea snails were there? $(10,1)(15,12) \quad(23,9)$	
Com	(Difference Unknown) Colorful coral live in the coral reef. The red coral was \qquad inches tall. The yellow coral was \qquad inches tall. How much taller was the red coral than the yellow coral? $(10,9)(23,12)(22,19)$	(Bigger Unknown) Colorful coral live in the coral reef. The red coral was \qquad inches tall. It was \qquad inches shorter than the yellow coral. How tall was the yellow coral? $(5,5)(13,4)(15,9)$	(Smaller Unknown) Colorful coral live in the coral reef. The red coral was \qquad inches tall. It was \qquad inches taller than the yellow coral. How tall was the yellow coral? $(10,3)(10,7)(25,9)$

Unit 2 CGI Problems for Water Habitats

Unir	(Resultados desconocidos) Había \qquad cocodrilos en el pantano. \qquad cocodrilos más se arrastraron al pantano. ¿Cuántos cocodrilos hay ahora en el pantano? $(7,3)(13,25)(15,25)$	(Cambio desconocido) Un cocodrilo en el pantano atrapo \qquad peces. ¿Cuántos peces más tiene que atrapar para \qquad peces para su comida? $(2,8)(11,21)(10,12)$	Había unos hipopótamos en el río. \qquad hipopótamos más bajaron al río. Ahora hay \qquad hipopótamos en el río. ¿Cuántos hipopótamos había en el río para empezar? $(4,6)(5,10)(10,16)$
Sepa	(Resultados desconocidos) Había \qquad huevos en los nidos de patos en la laguna. \qquad de ellos dieron polluelos. ¿Cuántos huevos no dieron polluelos? $(10,5)(22,2)(13,9)$	(Cambio desconocido) Había \qquad huevos en los nidos de patos de la laguna. Algunos de ellos dieron polluelos. \qquad de ellos no dieron polluelos ¿Cuántos huevos dieron polluelos? $(10,7)(16,6)(24,5)$	(Inicio desconocido) Había algunos huevos en los nidos de patos de la laguna. \qquad de ellos dieron polluelos. Ahora hay \qquad huevos. ¿Cuántos huevos había para empezar? $(2,8)(13,12)(21,8)$
Parte Todo	(Todo desconocido) Había \qquad estrellas de mar y \qquad caracoles de mar en el charco de marea. ¿Cuántas estrellas y caracoles había en el charco de marea? $(2,8)(10,32)(17,19)$	(Parte desconocida) Había un total de \qquad estrellas y caracoles de mar en el charco de marea. Si hubiera \qquad estrellas de mar en el charco de marea, ¿cuántos caracoles habría? $(10,1)(15,12)(23,9)$	
Comparar	(Diferencia desconocida) Coloridos corales viven en el arrecife. Un coral rojo medía \qquad pulgadas de alto. Un coral amarillo medía \qquad pulgadas de alto. ¿Cuánto más alto es el coral rojo que el coral amarillo? $(10,9)(23,12)(22,19)$	(Cantidad a comparar desconocida) Coloridos corales viven en el arrecife. El coral rojo medía \qquad pulgadas de alto y tenía \qquad pulgadas menos que el coral amarillo. ¿Cuánto medía el coral amarillo? $(5,5)(13,4)(15,9)$	(Referente desconocido) Coloridos corales viven en el arrecife. El coral rojo medía \qquad pulgadas. Medía \qquad pulgadas menos que el coral amarillo. ¿Cuánto medía el coral amarillo? $(10,3)(10,7)(25,9)$

Math Objectives

- Use concrete models to represent and name fractional parts of a whole and parts of a set of objects (fourths and halves).
- Use appropriate language to describe parts of a set, such as 3 out of 4 crayons are red.
- Explain that the more fractional parts used to make a whole, the smaller the part and the fewer the fractional parts, the larger the part.

Language Objectives

- Explain why each portion is a fourth/ half.
- Share-write what is a fourth or a half.

Vocabulary

half, halves
fourth, fourths
fair shares
equal pieces

Materials:

Teacher and Student Pairs
NOTE: you can certainly provide the 2 cups/partner Trail Mix already mixed if you prefer - would cut down on the $1 / 2 \mathrm{c}$ measuring cups you need to provide, and time to mix

- 2 cups trail mix/pair mix equal parts of :
- $1 / 2$ c pecans,
- $1 / 2$ c semi-chocolate chips
- $1 / 2$ c granola
- $1 / 2$ c raisins
- one 2-cup measuring cup
- four 12 oz plastic cups
- 2 napkins
- two $1 / 2$ cup measuring cups
- 2 scissors
- 2 rulers
- 2 markers
- 2 glue sticks
- BLM Trail Mix Fractions

Unit 2, Lesson 2
 Snack Fractions
 Children should wash their hands before this activity if using food items.

Snack Fractions

As part of each math day, please include a quick "Snack Fraction" activity. If your district/school does not allow any snacks to be given to students, please alter the activity by providing the paper shape to be divided into fractional parts.

Objective:

Today you and a partner are going to pretend to share a snack with a friend, but the snack will be shared in four portions. (Show the four plates in your demo set.) You will be able to tell each other the fractional name of the pieces. You will be able to draw a line on a picture to show the parts that you have. You will be able to write the fraction in numbers, and to explain the fractional parts you've divided into.

TODAY: Teacher demonstration of halves

You have the option today of using pre-mixed trail mix, or having the students mix their own before they divide it up in fractional parts.
Either way, once there is a 2-cup portion for each partner, tell them that once again today they must pretend that they are sharing the snack among four people.

QUESTIONING (before division of snack)

- How many parts will there be? (four)
- What fractional part would each person get if there were four people? (one-fourth)
- Would you rather have one-fourth of this snack or one-half? Why? (Let this discussion run its course so that you can see if students understand fractional comparisons. They probably cannot verbalize yet about relative size of denominators, but they should begin to see that $1 / 2$ is definitely $>1 / 4$.)
- Will you be sharing fractional parts of a whole or fractional parts of a set of objects? (fractional parts of a whole cup)

If you need to walk through the activity with the students, please feel free to do so; otherwise, let them decide how to divide the snack and what to call the division. Do let them know that the plastic cups are to hold their fractional portions rather than paper plates today - less mess.

	Unit 2, Lesson 2 Snack Fractions - continued Before you have them take their snacks, walk the students through the BLM Trail Mix Fractions. Students are to cut out the rectangle, fold it into fourths, cut and glue one-fourth to the plate on the record sheet; then answer the trail mix question on the BLM. You may write a class answer to the "because," but students should also write their own, or at least copy the class to the BLM, as the Snack Fraction Writing task. SNACK Eating: Now tell the partners that they may each have half of the snack. How much will each receive? (two plastic cups worth) Ask, "Which is the greater amount of the snack, one-fourth or one- half?" (response) How do you know? If you were going to compare these two fractions, what would you say: 1/2 1/4? Can you make two comparison statements?
Snack Fraction Writing: BLM Trail Mix Fractions Students identify the fractional part and complete the "because" statement on the record sheet.	
Objectives: Review what you learned and how you learned it.	

