	Unit 2, Lesson 1 3-4
Literature Vocabulary savanna	TV Lesson
habitat	Read objectives while pointing to the words in the math lesson objectives. After each math objective, show children what that means.
weath	
lightnin	
burrows	
shrubs	Math Objectives:
Math Vocabulary factors	- Represent multiplication facts by using a variety of approaches, such as repeated addition, equal-sized groups, array and area models, equal jumps on a number line and skip counting. - Model factors and products using area and array models. - Represent multiplication and division situations in pictures, word and number form.
multiplica	
division	
fact family area model	
array model	Language Objectives:
Materials	- Use the math vocabula
- Portion cups - 12 per student - 1 sheet dark construction paper	-
	Building Background, Math
- BLM TM - Multiple Ways to Multiply from TM Lesson	Multiplication is a great short cut! I'm sure you've already touched on multiplication during your regular school, but it's an important skill, so we're going to look at it in many different ways during this unit. You've already looked at repeated addition as another representation,
Time Clue	and your Classroom Teacher introduced you to two more
$\mathbf{B B}=1$ minutes	representations when she talked about the cookies and chocolate
CI $=26$ minutes	chips: same-sized sets and arrays. We'll work on all of those
AC $=1$ minute	representations today, and we'll see what multiplication word problems look like, too.
	ELPS (English Language
Proficiency Standards)	
1D, 1G, 2D, 2I, 3C, 3E, 3I	Comprehensible Input
	I'd like to know your Classroom Teacher's baker friend. I'll bet those
CCRS (College and CareerReadiness Standards)	are great chocolate chip cookies. We're going to see just how she
	could use repeated addition, same-sized sets and the array model to
ELA	figure out how many chocolate chips and how many cookies she has
IV.A.3; IV.B.1,2,3; I.B.1; I.C.1; II.D. 1,2;	in her batches.
Math	Let's look at your materials. These portion cups will represent the cookies. The base ten units will represent our chocolate chips, and the piece of construction paper will be our baking pan - it's just a way to keep our batches together. Let's work together now, please.
VIII.A.1,2,3,4,5; VII.B.1,2 VIII.C.1,3; IX.C.1,2,3.	
Cross-Disciplinary	
I.D.1,2,3,4; I.E.1,2.	
Classroom Teachers	Let's say that the baker was trying out a new recipe and decided to bake a test batch of six cookies. When you bake cookies, you usually
Please circulate the room to see that students are not having difficulty representing the problems.	place the dough in tidy rows and columns with enough room for the dough to spread out during baking. Let's make two rows of three cookies. (Do so, putting the portion cups in a 2×3 array on the construction paper "cookie sheet.")

SMART BOARD Collect data on the board, but use the real materials for the cookie demo.	Unit 2, Lesson 1 TV Lesson - continued Ok, give it a little time and the cookies bake (ding - sound of timer); time to take out the cookies. (Just leave the materials where they are.) The baker places the chocolate chips in the cookies NOW. Let's say she wants to push five chips into each of the warm cookies. (Count and drop 1, 2, 3, 4, 5 unit cubes into each portion cup.) The question is, how many chocolate chips did she use? First, think of the Math Movie in your mind - Tell your classroom teacher what you are seeing boys and girls? You may use your models to explain, too (pause). PIRATE: Well, I see six cookies on a cookie sheet. And I see five big yummy chocolate chips pushed into each warm cookie! TEACHER: Excellent math movie, Capt. Portio. Did you see that too, boys and girls? Let's write than in the problem column on our record sheet. The cookies are our groups - so we have six groups. And there are five chocolate chips in each group. The problem then is six groups of five chips (write in the problem column). How can you figure that one out? Tell your teacher what you would do to figure the number of chips the baker used. (pause) PIRATE: Well, we could use repeated addition. That would be $5+5+5+5+5+5=$. Hmm , I can skip count by 5 s six times (do so to 30 using fingers to keep track of the six cookies). TEACHER: That's certainly a way, Capt. Portio. And we know that we could use a multiplication number sentence 6 groups of 5 translates to 6×5 which we now know equals 30 . So $6 \times 5=30$. Remember that you have two FACTORS and one PRODUCT. Circle the factors in the number sentence, and underline the PRODUCT. Six and six are factors. 30 is the product of the two factors We have also created "same-sized" sets with our chocolate chips. We can draw a picture of those same-sized sets. What would you draw, boys and girls? Tell your Classroom Teacher. (pause)

\(\left.\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { TEACHERS: } \\
\text { All problems generate a MATH } \\
\text { MOVIE. We are not talking } \\
\text { joining or separating. We are } \\
\text { talking about the images that } \\
\text { appear in our minds when we } \\
\text { read a word problem. No matter } \\
\text { what type of problem you read, } \\
\text { there is some sort of action } \\
\text { taking place. Please encourage } \\
\text { students to see that action. }\end{array} & \begin{array}{l}\text { Unit 2, Lesson 1 } \\
\text { PIRATE: I see, I could draw five little circles in one set, then draw } \\
\text { that set a total of six times like this (draw on the record sheet whether } \\
\text { paper or Smart Board). } \\
\text { That gives me a picture of my Math Movie! Now I could count them }\end{array} \\
\text { one by one; or I could skip count by 5s; or if I know my multiplication } \\
\text { tables, I can multiply } 6 \text { x 5. But the picture helps me see the number } \\
\text { of chips and what the math movie is! There are still 30 chips (count by } \\
\text { 5s). } \\
\text { TEACHER: Great job! Yes, we have just used another multiplication } \\
\text { strategy, and that is to draw a picture of same-sized sets. And anytime } \\
\text { you SEE a picture that has multiple sets of the same number in each } \\
\text { set, you know you can multiply to find the answer! }\end{array}
$$ \right\rvert\, \begin{array}{l}Let's draw that picture on our record sheet in the "picture of same- \\
sized sets" column (do so). \\

Now, suppose the baker had made four cookie sheets that looked\end{array}\right\}\)| exactly like this one (refer back to the cookie sheet). How many |
| :--- |
| COOKIES would she have made? |

C	Unit 2, Lesson 1 3-4
You may need to complete the array investigation during the	TV Lesson - continued
the same format that the TV Teacher has used to finish if	PIRATE: How about a six pack of soda? They would be an array.
necessary before the actual Follow-up practice.	TEACHER: Yes, a six pack of soda is also arranged in an array. (Draw it, or show real six pack of soda.)
	Let's record that example: - What is our problem? two groups of three - How would you represent that as repeated addition? $3+3=6$ - The multiplication sentence? $2 \times 3=6$ FACTOR? PRODUCT? - Let's draw this array (do so in the array model column).
	PIRATE: Oh, and I gave my Mom a box of chocolates. They were arranged in an array, too!
	TEACHER: (Real box of chocolates or photograph on SMART $B O A R D$) Yes, this box certainly is an array - it is a rectangular shape, and the candies inside are arranged in rows and columns. Take a close
	- What would be the problem if you are trying to figure how many candies are in this box? (depends on the candy box) - Repeated addition number sentence? - What about a multiplication sentence? (create) FACTORS? PRODUCT? - And our array model?
	There are many ways to represent multiplication, boys and girls. Can you name the ones we've worked with during this lesson? (pause, then repeated addition, same-sized sets, array model, multiplication sentence)
	PIRATE: Well, and you used multiplication today during your Daily Routines. Where? In the CGI. (Explain task.)
	TEACHER: Thank you! What kind of strategy did you use, boys and girls - we can't wait to see your posters and read your descriptions!
Unit 2 Lesson 1 - CGI	Objectives: And now before we go, let's review what we have
used today to solve your CGI problem. Share your class posters if you can.	learned today! (do so)

BLM Unit 2, Lesson 1
(One page per student)
Problem/Problema

