Literature Vocabulary	Unit 2, Lesson 1 1 $1^{\text {st }}-2^{\text {nd }}$
habitat oceans	TV Lesson
colorfu blend	Read objectives while pointing to the words in the math
blend shore	lesson objectives. After each math objective, show children
tide pool	what that means.
swamp lake	
Math Vocabulary add	- Solve addition and subtraction problems.
	- Recognize fact families.
subtract	Understand what the equal sign means
compare	
regroup	Language Objectives:
tens ones	- Listen to the TV Teacher.
math movie fact families compatible numbers	- Speak: Explain fact families and how they can help you learn
	asic facts.
	eak: Discuss your solution strategi
	ead TV Teacher's notes on the TV.
Materials	Write the fact families
- Unifix or Linking cubes (two 1-color trains per student) - BLM TM Fact Family Houses	Building Background, Math
from TM Lesson (TV Teacher should have one filled out with all of the addition sentences.)	TEACHER: We're going to learn more about Fact Families during this unit. You know, understanding Fact Families can help us in our addition and subtraction. When we know our facts quickly, we can spend more time thinking about the problems they are used in! Did you know boys and girls, that when you know a fact family, you
Time Clue	
$\begin{aligned} & \mathbf{B B}=2 \text { minutes } \\ & \mathbf{C I}=24 \text { minutes } \\ & \mathbf{A C}=2 \text { minutes } \end{aligned}$	
	number sentences in our Fact Family houses for nine?
	Comprehensible Input, Math
ELPS (English Language Proficiency Standards) 2A, 2B, 2F, 2I, 3A, 3E, 3H	TEACHER: Well, then, let's find out those subtraction sentences
	Let's make a 2 -color train for our first Fact Family house of nine. Let's work on the $1,8,9$ house. What would that train look like boys
CCRS (College and Career Readiness Standards)	and girls? Please make one addition train for this family. (pause)
ELA II.B.1; III.B.1,2,3; IV.A.2,3; IV.B.1,2,3 MATH	AZULITO: That would be one (color) cubes and eight (color) cubes. And if I flip the train over, I have eight (color) cubes and one (color) cube. It's the same train, but the cubes are in a different order.
I.A.1; I.B.1; VIII.B.1,2; IX.A.1; IX.B.1,2; IX.C.1,3; X.A.1,2 CROSS DISCIPLINARY 1.A.1,2; I.B.1,2,3,4; I.C.1,2,3; II.A2	TEACHER: Well done. Boys and girls, I can see that most of you agree with Azulito! Make sure you have a $1+8=9$ train with your two colors of cubes. (slight pause) Now, subtract one (pause). How many cubes do you have left?

Azulito's Corner Unit 2 Lesson 1 Tell us all the different strategies used today to solve your CGI problem. Share your class posters if you can.	Unit 2, Lesson 1 TV Lesson - continued First, let's make the model for $0+9=9$. How would I do that boys and girls? What does that number sentence mean? (pause) AZULITO: It means that I have NO cubes of one color and nine cubes of another. TEACHER: Correct - everyone please make a $0+9$ train (pause and make yours). I have no (color) cubes, and I have nine (color) cubes. That makes nine cubes in all. And my number sentence is $0+9=9$. It's harder to see the flip, but imagine that the zero color is at the end. (flip) Now what number sentence do we have? AZULITO: Nine of one color and none of the other color. That would be $9+0=9$. TEACHER: Well done. Boys and girls, can you tell your Classroom Teacher what one of the subtraction sentences would be (pause)? $9-0=9$. And the other subtraction sentence? (pause) $9-9=0$. Hmm, looking at these four number sentences, can you tell what is so special about the number zero? (bit of a pause) AZULITO: Well, if I don't add anything to my cubes, then I have what I started with - zero means NO CUBES. And if I don't subtract anything from my cubes, then I have what I started with. Zero means NO CUBES. TEACHER: Good thinking, Azulito. You explained that very well. When you add zero to any number or subtract zero from any number, you still have the same number. I know that I heard that same thinking from many of the boys and girls out there! GREAT JOB! AZULITO: And speaking of explaining our thinking, I'd like to explain the Azulito Corner to you now (do so). TEACHER: Thank you, Azulito! We love to see your strategies for solving problems! Objectives: And now before we go, let's review what we have learned today! (do so)

