you do have.

Time Clue

$\mathbf{B B}=1$ minutes
$\mathbf{C I}=26$ minutes
AC $=\mathbf{1}$ minute

ELPS (English Language
Proficiency Standards)
$2 \mathrm{~A}, 2 \mathrm{C}, 2 \mathrm{~F}, 2 \mathrm{I}, 3 \mathrm{H}, 3 \mathrm{I}, 3 \mathrm{~J}, 4 \mathrm{C}$
CCRS (College and Career Readiness Standards)
Math
VIII.A.1,2,3,4,5; VII.B.1,2;
VIII.C.1,3; IX.C.1,2,3.

Cross-Disciplinary
I.D. 1,2,3,4; I.E.1,2.

ELA
II.A.4.6,7, 10; II.B.1; II.D.1;
IV.A.3;

SMART BOARD

Show models of arrays and corresponding algorithms.

Literature Vocabulary	Unit 3, Lesson 1 3-4
Math Vocabulary	TV Lesson
(repeated vocabulary)	Read objectives while pointing to the words in the math lesson objectives. After each math objective, show children what that means.
factors products	
multiplication	
division	Math Objectives: - Represent multiplication facts by using a variety of approaches, such as repeated addition, equal-sized groups, array and area models, equal jumps on a number line and skip counting.
fact family	
area model array mode	
Materials	
If possible, have two diffe	Model factors and products using area and array models.
color base ten sets per the following:	- Represent multiplication and division situations in pictures,
- Base ten sets (product, or inside the frame) - 1 flat, 18 longs, 35 units per student	Language Objectives:
- Base ten sets (factors, or fram	Use the math vocabulary during the activity
-5 longs, 18 units per student	escuss solution strategie
If you do not have two colors, make sure your students have a total of both sets in the color that	- Explain the relationship of the array model to the number representation of multiplication and division.

$\begin{array}{lr}\text { Unit 3, Lesson } 1 & \text { 3-4 } \\ \text { TV Lesson } & \end{array}$
Read objectives while pointing to the words in the math lesson objectives. After each math objective, show children what that means.

Math Objectives:

- Represent multiplication facts by using a variety of approaches, such as repeated addition, equal-sized groups, array and area models, equal jumps on a number line and skip counting.
- Model factors and products using area and array models.
- Represent multiplication and division situations in pictures, word and number form.

Language Objectives:

- Use the math vocabulary during the activity.
- Discuss solution strategies.
- Explain the relationship of the array model to the number representation of multiplication and division.

Building Background, Math

You've been visualizing multiplication; that is, seeing the math movie in multiplication problems. As you think about multiplication, what operation can you use to "undo" multiplication? (division)

We're going to work with array models today to see the connection between multiplication and division. This connection will lead us to fact families. Let's look at one family, a fact family of $1,12,12$.

First, look at your base ten sets. Many of you may have two different colors. Separate those colors now. You have one color set of just five longs and 18 units. We're going to use these in an outside frame on our array building. Don't worry if you don't' have the two colors. We'll show you how to compensate. You have another set that has one hundred, 18 tens and 35 units. This set will be used to fill in the array.

Comprehensible Input

Suppose Millie had found egg cartons that held just the usual 12 eggs? Let's make an array to prove that one carton has 12
compartments in it. So our question is, how many compartments are there in one carton that holds a dozen eggs?

| Classroom Teachers
 Please circulate the room to see
 that students are not having
 difficulty representing the
 problems. | Unit 3, LesSon 1
 TV Lesson - continued
 MAKING THE FRAME |
| :--- | :--- | :--- | :--- |
| We know we have one carton. And that each carton has 12 | |
| compartments in it. What are the fewest base ten blocks that we can | |
| use to represent 12? (pause) (One ten and two ones) | |
| Here is our frame. We are going to build an array inside this area. An | |
| array is a rectangle of rows and columns. This one has one row (point | |
| or highlight the one unit) and it has 12 columns (highlight the | |
| columns). | |

