

Unit 3, Lesson 1	Grades 5-6
TV Lesson - continued	(Ti)

We have shown a proportional relationship. Every time we mix these colors together using this proportion, we will get celery green.

We are going to look at part to whole proportional relationships, and we are going to look at part to part proportional relationships during this unit. Let's get started.

Comprehensible Input

In our celery green example, we looked at the ratio of the drops of each individual paint color to the total number of drops in the color.

Now, let's look at the ratio of the number of drops in each color to another color. This is a "part-to-part" comparison.

Let's look at our record sheet for today, BLM Ratio and Proportion. (Point to the appropriate areas on the chart.)
We're going to investigate Celery Green, but look at this first column.
We are going to compare the ratio of

- red drops of paint to yellow drops of paint;
- red drops of paint to blue drops of paint;
- and yellow drops of paint to blue drops of paint.

In other words, we are comparing parts of the new color to other parts of the new color. If you want celery green, you have to use these exact proportions of colors.
(Use the BLM Ratio and Proportion TEACHER KEY as your guide to filling out the chart with the students.)

Our first row is to compare the ratio of red drops to yellow drops.

- We want to model that in color tiles. Tell your teacher what you would use to model the number of red drops of paint to the number of yellow drops of paint. (Pause, then use your color tiles to model 1 red and 3 yellow.)
- Our next representation is to use the word "to." Tell your teacher how you would use this representation to show the ratio of the number of red drops of paint to the number of yellow drops of paint (pause, then write and say 1 to 3).
- Now let's use the colon representation of ratio. Tell your teacher what you would write to show this representation of the number of red drops of paint to the number of yellow drops of paint (pause, then write 1:3 and read one to three).

Unit 3, Lesson 1
 TV Lesson - continued

	Unit 3, Lesson 1
TV Lesson - continued	

- Our last representation is to show this ratio in fraction form. This form is going to be very helpful to us as we use ratio for predicting answers. Tell your teacher how you would write and how you would read this representation of ratio. (Pause then write 1 red/3 yellow, using the horizontal fraction bar, of course; and READ the ratio as 1 red to 3 yellow.)

The next two columns are interesting. You are going to use this ratio to determine changes to the mixture. Remember, you can ONLY mix celery green if you use the same ratio or proportion of the drops of color. Sometimes you'll need more paint than just a little drop.

Suppose you needed THREE drops of red paint? Tell your teacher how you can use the fraction form of the ratio to find the number of yellow drops you need. Predict your answer, then we will work through a simple algorithm to verify our predictions. (longer pause)

We can set up our ratios to find EQUIVALENT RATIOS. Finding equivalent ratios is very much like finding equivalent fractions. Let's use this simple example to work through the steps.

We know that our original ratio is one red drop to three yellow drops. Let write that fraction representation (do so, using the labels).

Now I want to find another ratio, so let me draw that ratio line, and label the numerator and denominator. I must ALWAYS compare in the same way in each ratio. I have compared the original ratio, red to yellow, so my other ratio must also compare red to yellow. (Write the fraction line and "red" in the numerator and "yellow in the denominator.)

The problem gives me the red. I want three drops of red. I need to find out how many yellow drops I need. Let's use a VARIABLE to take the place of that number. It can be any letter, but I'm going to use x just because you will be seeing a lot of x as you begin to work in Algebra with equations. This x simply marks the spot of the number I'm trying to find, the UNKNOWN QUANTITY.

This is our equation to solve, then. One red drop to three yellow drops is the same as three red drops to how many yellow drops?
How would you solve this equation? Tell your classroom teacher.
(longer pause)

$$
\frac{1 \text { red }}{3 \text { yellow }}=\underbrace{3 \text { red }}_{x \text { yellow }}
$$

	Unit 3, Lesson 1
TV Lesson - continued	

	Unit 3, Lesson 1
TV Lesson - continued	

One way is just to look at the equation. What did you multiply the one red by to get three red? (slight pause - 3) So if you multiplied the numerator by three, what must you multiply the denominator by? Remember, you want the new ratio to be in the same proportion as the original ratio - they must be equivalent! (pause - 3) $3 / 3$ is a form of one. When I multiply this first ratio by a form of one, the product might LOOK different, but it represents the same quantity, just in a different form.

So, if I multiply the original ratio by $3 / 3$, what is my new denominator? (pause - 9)

$$
\begin{aligned}
\frac{3 x}{3 \times} \frac{1 \text { red }}{3 \text { yellow }} & =\frac{3 \text { red }}{x \text { yellow }} \\
x & =9 \text { yellow drops }
\end{aligned}
$$

Now I know that if I have three drops of red, I must also use nine drops of yellow to give me the correct proportion to make celery green.

The last column asks you to find the ratio of red to yellow if six drops of red were used. Work that as a class, then we'll verify the same way. (Generous pause, then talk through this set up the same way.)

$$
\frac{6 \mathrm{x}}{6 \times} \frac{1 \text { red }}{3 \text { yellow }}=\frac{6 \text { red }}{x \text { yellow }}
$$

$$
x=18 \text { yellow drops }
$$

1 to 3,3 to 9 and 6 to 18 are all equivalent ratios. There is another way to solve for x. Sometimes the relationships will not be as obvious as they are in these examples. Sometimes you might need to cross multiply. Cross multiplication works great, especially when the relationship is not as easy to see as in these two examples. Let's work through these two using cross multiplication.

We can set up our ratios in the same way as we did in our earlier example. This time, though, we are going to multiply in a cross shape.
$1 \times x=x \quad 3 \xrightarrow{\text { y } \text { rellow }} \underset{\sim}{1 \text { red }} \underset{\text { yellow }}{3 \text { red }} \quad 3 \times 3=9$
I have x on one side of the equal sign and nine on the other.

$$
x=9
$$

	Unit 3, Lesson 1 TV Lesson - continued Why does this work? Because we are really shortcutting our process. I know that I have to multiply that original one red by three to get the new three red. If I multiply the numerator by three, I must also multiply the denominator by three. Let's work the second ratio this way so you can see the difference.
$\mathbf{1 x} \boldsymbol{x}=\boldsymbol{x}$	
I have x on one side of the equal sign and 18 on the other.	
$\boldsymbol{x}=\mathbf{1 8}$	

Unit 3 Lesson 1 - Transition to Math

One per group

Paint Store Relationships

Ellory Paint Store can mix just about any color of paint a customer wants. The following color chart tells the person mixing the colors how much of each color to add to a white base to make specific colors.

	Red	Yellow	Blue
Celery Green	1	3	1
Persimmon Orange	3	1	0
Lilac	1	0	3
Colonial Blue	0	1	4
Mango Yellow	4	6	0

Use the chart to answer the following questions:
We will consider the "whole" to be a combination of all of the colors for the paint.
What fractional part of Celery Green is:

red		blue
red	yellow	
red	yellow	blue
redred	yellow	blue
	yellow	blue
red	yellow	blue

What fractional part of Colonial Blue is
Express each fraction as a decimal:
What percent of the new color is:
red \qquad yellow \qquad blue \qquad
red \qquad yellow \qquad blue \qquad
red \qquad yellow \qquad blue \qquad
What fractional part of Mango Yellow is
red \qquad yellow \qquad blue \qquad Express each fraction as a decimal: What percent of the new color is:
red \qquad yellow \qquad blue \qquad
red \qquad yellow \qquad blue \qquad
http://painting.about.com/library/blpaint/blcolormixingpalette1.htm Online Mixing Palette for Painters. Mix and name your own colors. What happens when you use secondary colors?

Unit 3 Lesson 1 - Transition to Math

One per group

Paint Store Relationships

La tienda de pinturas Ellory Paint Store puede crear cualquier color de pintura que pueda requerir un cliente. La próxima carta de colores indica a la persona que mezcla los colores cuánta cantidad de cada color debe añadir a una base blanca para crear colores específicos.

	Rojo	Amarillo	Azul
Verde apio	1	3	1
Anaranjado	3	1	0
Lila	1	0	3
Azul colonial	0	1	4
Amarillo mango	4	6	0

Usa la carta de colores para contestar las siguientes preguntas:
Consideraremos el "entero" como una combinación de todos los colores para crear la pintura.

Qué fracción de Verde Apio es:
Expresa cada fracción como decimal:
Qué por ciento del nuevo color es:
Qué fracción de anaranjado es:
Expresa cada fracción como decimal:
Qué por ciento del nuevo color es:
Qué fracción de lila es:
Expresa cada fracción como decimal:
Qué por ciento del nuevo color es:
Qué fracción de azul colonial es: Expresa cada fracción como decimal: Qué por ciento del nuevo color es:

Qué fracción de amarillo mango es:
Expresa cada fracción como decimal:
Qué por ciento del nuevo color es:

\qquad azul \qquad azul \qquad azul \qquad
amarillo \qquad
\qquad amarillo \qquad azul \qquad amarillo \qquad azul \qquad
amarillo \qquad azul \qquad
rojo \qquad
amarillo
amarillo
amarillo azul \qquad
\qquad
\qquad amarillo \qquad azul \qquad azul \qquad
\qquad amarillo \qquad azul \qquad amarillo \qquad azul \qquad amarillo \qquad azul \qquad
http://painting.about.com/library/blpaint/blcolormixingpalette1.htm Online Mixing Palette for Painters. Mix and name your own colors. What happens when you use secondary colors?

Ratio and Proportion - KEY

Color Chart

	Red	Yellow	Blue
Celery Green	1	3	1
Persimmon Orange	3	1	0
Lilac	1	0	3
Colonial Blue	0	1	4
Mango Yellow	4	6	0

Use the chart to answer the following questions:
We are going to look at different relationships on the chart.

Celery Green	color tiles	part TO part	part:part	$\frac{\text { part }}{\text { part }}$	What would the ratio be if you increased the red paint to 3 drops? (fraction form)	What would the ratio be if you increased the red paint to 6 drops? (fraction form)
Compare ratio of red and yellow drops	$\square \square \square \square$	1 to 3	1:3	$\frac{1 \text { red }}{3 \text { yellow }}$	$\frac{3 \text { red }}{9 \text { yellow }}$	$\frac{6 \text { red }}{18 \text { yellow }}$
Compare ratio of red and blue drops	$\square \square$	1 to 1	1:1	$\frac{1 \text { red }}{1 \text { blue }}$	$\frac{3 \text { red }}{3 \text { blue }}$	$\frac{6 \text { red }}{6 \text { blue }}$
Compare ratio of yellow and blue drops	$\square \square$	3 to 1	3:1	$\frac{3 \text { yellow }}{1 \text { blue }}$	$\frac{9 \text { yellow }}{3 \text { blue }}$	$\frac{6 \text { yellow }}{2 \text { blue }}$

Ratio and Proportion

Color Chart

	Red	Yellow	Blue
Celery Green	1	3	1
Persimmon Orange	3	1	0
Lilac	1	0	3
Colonial Blue	0	1	4
Mango Yellow	4	6	0

Use the chart to answer the following questions:
We are going to look at different relationships on the chart.

Celery Green	color tiles	part TO part	part:part	part part	What would the ratio be if you increased the red paint to 3 drops?	What would the ratio be if you increased the erd paint to 6 drops?
Compare ratio of red and yellow drops						
Compare ratio of red and blue drops						
Compare ratio of yellow and blue drops						

Ratio and Proportion
Carta de colores

	Rojo	Amarillo	Azul
Verde apio	1	3	1
Anaranjado	3	1	0
Lila	1	0	3
Azul colonial	0	1	4
Amarillo mango	4	6	0

Usala carta de colores para contestar las siguientes preguntas:
Consideremos las relaciones diferentes en la carta.

Verde apio	Azulejos de colores	Parte a parte	Parte:parte	Parte parte	¿Cuál sería la razón ("ratio") si añadieras 3 gotas adicionales de pintura roja?	iCuál sería la razón ("ratio") si añadieras 6 gotas adicionales de pintura roja?
Compara la razón de gotas de amarillo y rojo						
Compara la razón de gotas de rojo y azul						
Compara la razón de gotas de amarillo y azul						

