Note: "Strategy" refers to any method that could lead to the correct answer. Students may use a correct strategy and still get an incorrect answer.

Note: Writing labels is important to stress during instruction. However, for the purpose of this assessment, students do not lose credit when the label is missing.

Objective/Needs	Problems Points
NY-3.OA. 3 - Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities. 1a-Award 1 point for a correct array 1b-Award 1 point if student writes all four number sentences of the fact family	1a. Draw an array to model 6×7. You may draw this freehanded, or use the grid provided. 1a. Array: Student can draw an array or shade in the grid to represent 6×7. This array represents 6 rows by 7 columns. An array with 7 rows by 6 columns can be accepted. 1b.Write the fact family for 6×7. 1b. Fact Family: $\begin{array}{ll} 6 \times 7=42 & 42 \div 7=6 \\ 7 \times 6=42 & 42 \div 6=7 \end{array}$ Number sentences can be in any order as long as all 4 are recorded.
NY-3.OA. 4 - Determine the unknown whole number in a multiplication or division equation relating three whole numbers 2-Award 1 point for the correct answer	2. $36 \div 6=6$
NY-3.OA. 1 - Interpret products of whole numbers. e.g., Interpret 5 $\times 7$ as the total number of objects in 5 groups of 7 objects each. 3-Award 1 point for the answer	3. Which picture below could be used to model 3×5 ? ANSWER: C (3 groups of 5) C

Note: "Strategy" refers to any method that could lead to the correct answer. Students may use a correct strategy and still get an incorrect answer.

Note: Writing labels is important to stress during instruction. However, for the purpose of this assessment, students do not lose credit when the label is missing.

NY-3.OA. 3 - Use
multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities. E.g., using drawings and equations with a symbol for the unknown number to represent the problem.

CGI - Equal Groups (Result Unknown or "a x b = ?")

4a-Award 1 point for the answer

4b-Award 1 point for showing a reasonable strategy

NY-3.OA. 3 - Use
multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities.

CGI - Change Unknown or ("a x ? = p" or "p/a=?")

5a-Award 1 point for the answer

5b-Award 1 point
for showing a
reasonable strategy
NY-3.NF.3b - Recognize and generate equivalent fractions. e.g., $1 / 2=2 / 4 ;$ $4 / 6=2 / 3$
Explain why the fractions are equivalent.
4. Carlos caught 18 fish and wanted to freeze them in equal shares for 3 meals. If the fish are all about the same size, how many fish should he put in each freezer container?
Show your strategy.

ANSWER: 6 fish.

Strategy: Students could draw a picture where 18 fish has been divided among 3 meals; they could skip count; they could use repeated subtraction; they could draw tally marks, they could use a division sentence. (3x \qquad $=18$ or $18 \div 3=$ \qquad
5. Juanita was packing the 24 dolls in her doll collection. She wanted to pack only 4 dolls per box. How many boxes will she need?
Show your strategy.

ANSWER: 6 boxes.

Strategy: Students could draw a picture where 24 dolls (dots) have been divided by groups of 4 to see how many boxes she needed; they could skip count; they could use repeated subtraction; they could draw tally marks, they could use a division sentence.
(24 $\div 4=$ \qquad or \qquad x $4=24$)
6. \square The model shows $\frac{1}{3}$.
6a. Use the second rectangle to model a different fraction equivalent to

$$
\frac{1}{3} .
$$

$6 b$. Write the name of the other fraction equivalent to $\frac{1}{3}$.

6-Award 1 point if the student does both parts correctly: shows an equivalent fraction in the rectangle and writes the fraction name.	(\#6 continued) Answers: 6a. Students should use the blank rectangle to model (draw and shade) the equivalent fraction, as well as write the fraction. 6b. The written fraction could be in words, although most students will use the numeric form. For example, a possible answer would be 2/6 which could also be written acceptably as two sixths.
NY-3.OA.3 - Use multiplication and division within 100 to solve word problems in situations involving equal grons,	7. Karli is making batches of cookies on a small cookie sheet. If she bakes 5 pans just like the picture, how many cookies will she bake? Show your strategy.

groups, arrays, and measurement quantities. E.g., using drawings and equations with a symbol for the unknown number to represent the problem.

7-Award 1 point if the student has both the correct answer and shows a reasonable strategy

NY-3.NF.3b - Recognize and generate equivalent fractions. e.g., $1 / 2=2 / 4 ; 4 / 6=$ 2/3 Explain why the fractions are equivalent. NY-3.NF.3d - Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons rely on the two fractions referring to the same whole. Record the results of comparisons with the symbols $>,=,<$, and justify the conclusions, e.g., by using a visual fraction model.

8-Award 1 point if the

 student divides each rectangle appropriately, circles the larger fraction, and writes the fractions in the correct blank space.
ANSWER: 45 cookies.

Strategy: Students could draw additional pans, use repeated addition; skip count, tally; use multiplication.
($5 \times 9=$ \qquad $; 9+9+9+9+9=$ \qquad

8a. Divide the cakes into the fractional parts.

Circle the fractional portion on the picture that is larger.

8c. Using the fractions above write the comparison statement.

